
 

© Red Gate - www.red-gate.com 

From

My Case for Agile 
Development 

Whitepaper based on original 

presentation by Cary Millsap, 

commissioned by Red Gate Software 



 

© Red Gate - www.red-gate.com 

My Case for Agile Development 

This article will cover the following agenda: 

 

Agile and Me 

This section begins with a joke and it’s a true story about a joke.  Six or seven friends and I 

were sitting around a dinner table one night in Denmark a few months ago–we’d known each 

other for a really long time–enjoying a drink before the food got there.  We’d ordered already, 

it took 15 extra minutes or so, we expected we’d be eating by now but the food hadn’t 

arrived.  Finally the food started to arrive and none of it was right.  The first guy said, “Hey, I 

ordered French fries not mashed potatoes,” and the second person was complaining, “My 

meat is overcooked, I ordered it rare.”  The waiter, confronted with so many mistakes started 

apologising to us at the table and told us not to worry, he’ll get it fixed as soon as he could.  

One of the database administrators at the table piped up with the comment “Ah, they must 

be doing Agile in the kitchen.” 

That’s what Agile is to the database administrator community that I’m a part of and it’s 

basically one more thing that developers and database administrators have to fight about.  

The relationship between database administrators and developers in the north of the 

universe is not always the smoothest in the world and I assume it’s probably similar in other 

product disciplines.  But my job is to take DBA communities and developer communities and 

mash them together so that they can cooperate more fully, and that’s really the spirit in 

which I offer this today.  Fundamentally, as mostly a developer, but a developer who has 

been immersed in the database administrator community for the last 20 years, I really truly 

believe Agile has a lot of good to it, but a lot of database administrators don’t see it because 

the way it is presented to them makes it completely disgusting for them. 

 

 



 

© Red Gate - www.red-gate.com 

The first realisation that I’d like you to contemplate with me, and this is my own realisation in 

running a business as a software development company, is that change is for the most part 

unpredictable, it’s absolutely inevitable, it’s multidimensional, it’s complex and it’s a number 

of other things that make dealing with change really difficult.   

 

However, responsiveness to change is an advantage.   

 

Now a lot of people don’t like change, they think that their job is to prevent change from 

occurring, but as a business leader change is something that you need to embrace and it’s 

something that you need to be able to handle well.  There are all sorts of reasons that things 

change and I’ll talk about a lot of them as we go through the paper, but being able to 

respond to that change is an advantage. 

The third realisation and this is about a ten year old realisation for me, is that traditional 

design build methods were just not working for me, there were several problems which I’ll 

explain in due course.   

 

 



 

© Red Gate - www.red-gate.com 

I happened to come across a book called Extreme Programming Explained, in other words 

XP explained.  It has on the cover the phrase ‘embrace change’ and basically within that 

book I’ve found a discipline for responding to change.  Those of you that have experienced 

Agile in a bad way are probably are thinking, “Wow, I thought that Agile and discipline were 

antonyms,” but actually I want to convince you that Agile is not a synonym for undisciplined, 

and if Agile looks undisciplined to you then the people who are doing what they call Agile are 

just doing it wrong.   

This Venn diagram is the set of all developers in the world, and I think that Agile is a fairly 

popular thing for people to say that they like or believe in. 

 

But the disciplined practitioners of Agile are a very small subset of that set of developers 

who say they like Agile and this isn’t really any big surprise, the whole world works this way.  

Everybody in the world is the big duck egg green circle and there are few people in the world 

that say something and there are far fewer that actually do the thing they say. 

 



 

© Red Gate - www.red-gate.com 

 

This article takes its inspiration from a book written by Kent Beck with Cynthia Andres called 

Extreme Programming Explained and the two fundamental core rudders in the book are 

basically that the purpose of software development is to satisfy the customer through early 

and continuous delivery of valuable software and that working software is the primary 

measure of progress. This rang a bell for me because back in the early 2000s I was 

attempting to create an optimisation method for Oracle database applications that would 

work uniformly across performance problem domains.  Where I started was with this brilliant 

book written by a gentleman named Eli Goldratt who, I’m very sad to say, passed away in 

2011, but The Goal is a book about optimising the manufacturing process.  As The Goal is to 

the process of manufacturing optimism, the book that Jeff Holt and I wrote called Optimising 

Oracle Performance I hope, has the same relationship to database application optimisation.  

Goldratt’s work really inspired our work and our method is very similar. It’s, in fact, derived 

from Goldratt’s method.  What I found in Kent Beck’s book is that his book actually has the 

same relationship to software development optimisation - basically the key of Extreme 

Programming Explained is to keep your eye on the overall goal of the process of software 

development and basically evaluate or optimise the process based on the impact of every 

decision you make upon that overall goal. 

My 11 year old son is a professional baseball player and we travel with him and take him to 

games all around the US and there’s another book called Moneyball written by Michael 

Lewis that actually is bizarrely similar to the other three books and it’s about baseball club 

optimisation.  So it’s very interesting how many different disciplines have the same approach 

to optimising that Eli Goldratt started roughly 20 years ago.   

 

As Goldratt explains, the global goal for an organisation, whether it’s a profit or non-profit 

organisation, is to leverage its resources under its control as well as possible.  He uses the 

three metrics: net profit, cash flow and return on investment as the things you want to 

maximise pretty much no matter what kind of a business you are in.  Why Agile?  Well it’s 

because I want better net profit, cash flow and return on investment, I also want higher 

quality – this is one of the ways you get better net profit, cash flow and return on investment.  

I also want more fulfilment from my developers and myself; when I write a product I want to 

feel better about it, and I want to enjoy doing it more, and Agile gives me these things.  So I 



 

© Red Gate - www.red-gate.com 

do Agile for these reasons, not because it’s easy – as a matter of fact doing Agile correctly is 

extremely not easy. 

 



 

© Red Gate - www.red-gate.com 

Five Practices from XP 

The first practice is called Incremental Design.  One of the reputations of Agile is that yoǳ Ƨǳǎǘ ŘƻƴΩǘ 
do design.  I think a lot of people use Agile as a caricature or cartoon for bad project management.   
 

 
 
¢ƘŜ ǿŀȅ ǘƘŀǘ ǘƘŜȅ ǿƻǳƭŘ ŘŜŦƛƴŜ !ƎƛƭŜ ƛǎ ǘƻ ǎŀȅ άhƘ !ƎƛƭŜ ƛǎ ŀ ǇǊƻƧŜŎǘ ǿƘŜǊŜ ȅƻǳ ŘƻƴΩǘ ŘŜǎƛƎƴ 
ŀƴȅǘƘƛƴƎΣέ ŀƴŘ ǘƘŀǘΩǎ ŎƻƳǇƭŜǘŜƭȅ ŎƻǳƴǘŜǊ ǘƻ how I see it and how I use Agile, ŀƴŘ ƛǘΩǎ ŎƻǳƴǘŜǊ ǘƻ Ƙƻǿ 
Kent Beck in his XP book describes it:  
 

ά¢ƘŜ ǉǳŜǎǘƛƻƴ ƛǎ ƴƻǘ ǿƘŜǘƘŜǊ ƻǊ ƴƻǘ ǘƻ ŘŜǎƛƎƴΣ ǘƘŜ ǉǳŜǎǘƛƻƴ ƛǎ ǿƘŜƴ ǘƻ ŘŜǎƛƎƴΦ  
Incremental design suggests that the most effective time to design is in the light of 
ŜȄǇŜǊƛŜƴŎŜΦέ 

 
Fundamentally, the problem that incremental design is meant to address is that plans fail.  No 
matter how carefully you plan for the year prior to the project, when you try to create a complete 
airtight plan that is going to define behaviour of a project team for the following five years, plans fail.   
 
My wife and I built a house about 13 years ago and we built it from a pre-existing design where the 
architect allows you how to stretch a closet into a little bit of a different shape, but not materially 
change the layout of a house too much.  So we picked a pretty decent plan and made a few minor 
customisations to it. One day when I walked out onto the site when the framers were putting up the 
wood to frame out the shape of the house, the leader of the framer company came over to me and 
said, άIŜȅΣ L ǿŀƴǘ ǘƻ ŀǎƪ ȅƻǳ ŀ ǉǳŜǎǘƛƻƴΣ ǘƘƛǎ Ǉƭŀƴ Ƙŀǎ ŀ ŎƻƴǘǊŀŘƛŎǘƛƻƴ ƛƴ ƛǘ ŀƴŘ LΩŘ ƭƛƪŜ ȅƻǳ ǘƻ ǘŜƭƭ ƳŜ 
ǿƘŜǘƘŜǊ ȅƻǳ ǿŀƴǘ ƳŜ ǘƻ Řƻ ƛǘ ǘƘƛǎ ǿŀȅ ƻǊ ǘƘŀǘ ǿŀȅΦέ  .ŀǎƛŎŀƭƭȅ ǘƘŜ ŘǊŀǿƛƴƎ ǿŀǎ ǎƻƳŜǘƘƛƴƎ ǘƘŀǘ ǿŀs 
ƛƳǇƻǎǎƛōƭŜ ǘƻ ƛƳǇƭŜƳŜƴǘ ƛƴ ǊŜŀƭƛǘȅΦ  LŦ ȅƻǳ ǿŀƴǘ ǘƻ ǘƘƛƴƪ ŀōƻǳǘ ŀƴ a / 9ǎŎƘŜǊ ǇǊƛƴǘΣ ǘƘŀǘΩǎ ŜǎǎŜƴǘƛŀƭƭȅ 
what my plan had been and the framer just wanted to know how to resolve the ambiguity.  So there 
are ways to prevent a failed plan from failing your pǊƻƧŜŎǘ ŀƴŘ ǘƘŀǘΩǎ ǿƘŀǘ ǘƘƛǎ ǿƘƻƭŜ ƴƻǘƛƻƴ ƻŦ 
incremental design is all about. 
 
Now traditionally, and I say traditionally because it extends through the beginning of our lifetimes, 
but this traditional is only about 100 to 150 years old, back in the time of Frederick Taylor. His job of 



 

© Red Gate - www.red-gate.com 

trying to automate production and assembly lines meant that in order to optimise an assembly line 
he needed to separate the thinking from the doing.   
 
 
So basically, traditional design build processes have thinkers front loaded in the project over in the 
following domain: 
 

 
When construction starts the thinkers go off to another project and now the builders come in and 
ōǳƛƭŘ ǿƘŀǘ ǘƘŜ ǘƘƛƴƪŜǊǎ ǘƘƻǳƎƘǘ ǳǇΦ  ¢ƘŜ Ǉƭŀƴ ƛǎ ǎǳǇǇƻǎŜŘ ǘƻ ōŜ ŀƛǊǘƛƎƘǘ ŜƴƻǳƎƘ ǘƘŀǘ ǘƘŜǊŜ ŘƻŜǎƴΩǘ 
need to be a whole lot of thinking after construction begins.  In the software industry, my experience 
is that, ǘƘŀǘ Ƨǳǎǘ ŘƻŜǎƴΩǘ ǿƻǊƪ ƻǳǘ ǘƘŜ ǿŀȅ ƛǘΩǎ ǎǳǇǇƻǎŜŘ ǘƻ ǾŜǊȅ ƻŦǘŜƴΦ  bƻǿ ǘƘŜǎŜ ǇƛŎǘǳǊŜǎ LΩƳ 
ǎƘƻǿƛƴƎ ŀǊŜ ŀŎǘǳŀƭƭȅ ŦǊƻƳ ǘƘŜ ŎƻƴǎǘǊǳŎǘƛƻƴ ƛƴŘǳǎǘǊȅΣ ƴƻǘ ǘƘŜ ǎƻŦǘǿŀǊŜ ƛƴŘǳǎǘǊȅΦ  ¢ƘŜǊŜΩǎ ŀ ƴŜǿ ǘǊŜƴŘΣ 
or a newish trend, which is actually how people used to build things 200 years ago and 2,000 years 
ago, called architect-ƭŜŘ ŘŜǎƛƎƴ ōǳƛƭŘΦ  ¢ƘŀǘΩǎ ǿƘŜǊŜ ǘƘŜ ŀǊŎƘƛǘŜŎǘ ōŀǎƛŎŀƭƭȅ ǎǘŀȅǎ ŜƴƎŀƎŜŘ ǘƘǊƻǳƎƘƻǳǘ 
the duration of a project.    Instead of the smart guys coming in, making a plan and then getting the 
heck out of the project, they stick around until the end of the project, but the decision-making 
dwindles because as you get deeper and deeper in a project more of the project gets constructed 
ŀƴŘ ǎƻ ǘƘŜǊŜΩǎ ƭŜǎǎ ƴŜŜŘ ŦƻǊ ŘŜǎƛƎƴ ǘƘǊƻǳƎƘƻǳǘ ǘƘŜ ŘǳǊŀǘƛƻƴ ƻŦ ŀ ǇǊƻƧŜŎǘΦ  ¢Ƙƛǎ is called architect-led 
design build.  This was actually regarded immoral three decades ago because of the influence of 
ǳƴƛƻƴƛǎŀǘƛƻƴ ŀƴŘ ǎǇŜŎƛŀƭƛǎŀǘƛƻƴ ƻŦ ƭŀōƻǳǊ ƛƴ ǘƘŜ ǿŜǎǘŜǊƴ ƛƴŘǳǎǘǊƛŀƭƛǎŜŘ ǿƻǊƭŘΣ ōǳǘ ƴƻǿŀŘŀȅǎ ƛǘΩǎ ƳƻǊŜ 
of a craftsman way to approach a project where the leader and the planner stays engaged 
throughout the entire project.  So the top thing in the software world is what people refer to as big 
design upfront, the next ǇƛŎǘǳǊŜ ǊŜǇǊŜǎŜƴǘǎ ǿƘŀǘ LΩƳ ŎŀƭƭƛƴƎ ƛƴŎǊŜƳŜƴǘŀƭ ŘŜǎƛƎƴΦ 
 



 

© Red Gate - www.red-gate.com 

 
 
The second practice of XP is called Rapid Iteration.  This goes back to the notion that working 
software is the primary measure of progress.  Do you know what the worst kind of software in the 
world is?  IǘΩǎ ǘƘŀǘ ǎƻŦǘǿŀǊŜ ǘƘŀǘ ƛǎ фл҈ ŎƻƳǇƭŜǘŜΣ ōǳǘ ƴƻōƻŘȅ Ŏŀƴ Ǌǳƴ ƛǘ ȅŜǘΦ  I run across this kind of 
ǎǘǳŦŦ ƛƴ ǇǊƻƧŜŎǘǎ ƛƴ Ƴȅ hǊŀŎƭŜ ǿƻǊƪ ŀƭƭ ǘƘŜ ǘƛƳŜΦ  LΩƭƭ ǎŜŜ ŀ ǇǊƻƧŜŎǘ ǘƘŀǘΩǎ ōŜŜƴ ǊǳƴƴƛƴƎ ŦƻǊ ǘƘǊŜŜ ȅŜŀǊǎΣ 
but no users have been able to even see a prototype yet because the application is 90% finished and 
the vendor has been paid 90% of its price tag, but nobody can run the application until the final bits 
are put together.  What typically happens in these types of engagement is when the final does get 
put together, then 20 people get to sit in a training course and they find oǳǘ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ŘƻŜǎƴΩǘ 
scale to 20 people in a training room.  Well of course the project is late and over budget by now so 
ǘƘŜȅ ŘƻƴΩǘ ƘŀǾŜ ǘƛƳŜ ǘƻ ŦƛȄ ǘƘŜ ǇŜǊŦƻǊƳŀƴŎŜ ǇǊƻōƭŜƳǎ ŀƴŘ ƛǘ ƎŜǘǎ ǇŜƻǇƭŜ ƛƴ ŀ ǊŜŀƭ ōƛƴŘΣ ŜǎǇŜŎƛŀƭƭȅ 
when the project was supposed to be designed to support 20,000 users instead of just 20.  Well the 
Agile answer to that is these loops inside the architect design build scenario, the method of doing 
ŘŜǎƛƎƴ ǿƘƛƭŜ ȅƻǳΩǊŜ ōǳƛƭŘƛƴƎΦ  ¢ƘŜǎŜ ƭƻƻǇǎ ōŜŎƻƳŜ ǾŜǊȅ ƛƳǇƻǊǘŀƴǘ ŀƴŘ ŜŀŎƘ ƻƴŜ ƻŦ ǘƘŜǎŜ cycles 
needs to resolve in runnable software that people can actually get their hands on and experience 
how the stuff works and when you do that, you find that the design tends to refine itself rather 
quickly.   
 



 

© Red Gate - www.red-gate.com 

 
I've blogged a couple of cases, if you go to carymillsap.blogspot.com and search for the term 
ΨƳŜǎǎŜŘ ǳǇ ŀǇǇǎΩ ȅƻǳϥƭƭ ǎŜŜ ŀ ŎƻǳǇƭŜ ƻŦ ŀǇǇƭƛŎŀǘƛƻƴǎ ǘƘŀǘ ŀǊŜ ǇŀƛƴŦǳƭƭȅ ƻōǾƛƻǳǎƭȅ ƴƻǘ ŘŜǎƛƎƴŜŘ ǘƘƛǎ 
way.  They are painfully obviously not used by the people that designed them, otherwise you know 
the design would have never made it into production. 
 
The third practice is called Test-First Progamming and as Kent Beck introduces it: 
 

άThe continuous testing reduces the time to fix errors by reducing the time it takes to 
discover them.έ 
 

That's exactly the experience that I've had.  How many of you have ever been afraid, literally, to go 
and touch somebody's code.  It might be yours that you wrote three years ago; it might be 
somebody else's code that left the company.  I heard a story about a customer of ours who was 
afraid to go and  touch somebody's code because the person that had wrote it had left three years 
ago.  That's a big problem and it basically speaks to a lack of confidence in somebody's ability to 
understand what the code does, and also their lack of confidence that if they change the code they 
won't break something unintended.  This is how Test-First Programming works: step one is you add a 
case to your case tracking system (we use a thing called FogBugz which is written by Joel Spolsky's 
company Fog Creek); that case then becomes a test, it's literally a piece of code that says I'm going 
to run the application and for this input it had better create that output.  Well of course when a new 
test is integrated into the test suite, all the previous tests succeed, but the new test will fail and you 
want that because if the new test doesn't fail then the test doesn't really describe a new feature, it 
describes an old feature.  Then you write code to accommodate passing that test and you run all the 
tests so that the tests will succeed.  Basically there's a loop between potentially step five and step 
two that you may have to refine your test, you may have to refine your code, but ultimately all your 
tests ǿƛƭƭ ƴƻǿ ǎǳŎŎŜŜŘΦ  !ǘ ǘƘƛǎ ǇƻƛƴǘΣ ƛǘϥǎ ǎŀŦŜ ǘƻ ǊŜŦŀŎǘƻǊΣ ǎƻ ǘƘƛǎ ƳŜŀƴǎ ȅƻǳ Ŏŀƴ ƘƻƴƻǳǊ YƴǳǘƘΩǎ 
advice which says άwrite the thing to be maintainable and then go back later and if the code is slow 
ƻǊ ƛŦ ǘƘŜ ŎƻŘŜ ƛǎ ŦŀŎǘƻǊŜŘ ǇƻƻǊƭȅ ǿƘŜǊŜ ȅƻǳΩǾŜ Ǝƻǘ ǘƘŜ ǎŀƳŜ few lines of code in 17 places throughout 
your application, now you can refactor safely and securely knowing that as long as your test passed 
ȅƻǳ ƘŀǾŜƴΩǘ ōǊƻƪŜƴ ǘƘŜ ŦǳƴŎǘƛƻƴŀƭ ŀǎǇŜŎǘǎ ƻŦ ȅƻǳǊ ŎƻŘŜΦέ   
 

http://carymillsap.blogspot.com/


 

© Red Gate - www.red-gate.com 

 
 
 
The fourth practice is called Pair Programming and this is one of the things when people talk about 
·t ƛǘΩǎ ǇǊƻōŀōƭȅ ƻƴŜ ƻŦ ǘƘŜ ŦƛǊǎǘ ǘƘƛƴƎǎ ǇŜƻǇƭŜ ǘƘƛƴƪ ƻŦΦ  YŜƴǘ .ŜŎƪ Ƙŀǎ ŀ ƴƛŎŜ ǿŀȅ ƻŦ ǘǳǊƴƛƴƎ ŀ ǇƘǊŀǎŜΥ 
 

άSilence is the sound of risk piling upΦέ 
 
Pair Programming to me is a solution to problems like these: 

 
hŎŎŀǎƛƻƴŀƭƭȅ LΩƭƭ ŎƻƳŜ ƛƴǘƻ ǿƻǊƪ ŀƴŘ LΩƭƭ Ƨǳǎǘ ŎƻƳǇƭŜǘŜƭȅ ƎŜǘ ǎǘǳŎƪ ƻƴ ǎƻƳŜǘƘƛƴƎ ǘŜŎƘƴƛŎŀƭΦ  aŀȅōŜ LΩƳ 
ŎŀǇŀōƭŜ ƻŦ ŘƻƛƴƎ ƛǘ ōǳǘ LΩƳ Ƨǳǎǘ ƴƻǘ ƛƴ ǘƘŜ ƳƻƻŘΣ LΩǾŜ Ǝƻǘ ǘƘŜ ǘƘƻǳƎƘǘ ǘƘŀǘ L Ƨǳǎǘ ŘƻƴΩǘ ǘƘƛƴƪ L ƘŀǾŜ ǘƘŜ 
energy to spend four hours fixing this ǇǊƻōƭŜƳ ŀƴŘ L ǘƘƛƴƪ ƛǘΩǎ ƎƻƛƴƎ ǘƻ ǘŀƪŜ ǘƘŀǘ ƭƻƴƎΦ  {ƻƳŜ Řŀȅǎ L 
ŎƻƳŜ ƛƴǘƻ ǘƘŜ ƻŦŦƛŎŜ ŀƴŘ L ǊŜŀƭƭȅ ŘƻƴΩǘ ŦŜŜƭ ƭƛƪŜ ƳŀƪƛƴƎ ŀ ǘŜǎǘΣ L ŦŜŜƭ ƭƛƪŜ ǿǊƛǘƛƴƎ ŎƻŘŜ ōǳǘ L ŘƻƴΩǘ ŦŜŜƭ 
like doing step two which was create the test.  Pair programming helps to solve those problems for 
ǘƘŜ ǎŀƳŜ ǊŜŀǎƻƴ ǘƘŀǘ ŀ ǿƻǊƪƻǳǘ ōǳŘŘȅ ƘŜƭǇǎ ȅƻǳ ƴƻǘ ǎƪƛǇ ŀ Řŀȅ ƻŦ ƎƻƛƴƎ ǘƻ ǘƘŜ ƎȅƳΦ  ²ƘŜƴ ǘƘŜǊŜΩǎ 
somebody there watching and you know that somebody is watching, you tend to be more careful 
and you tend to have more energy.  This is a floor plan of my office and this is how we pair: 



 

© Red Gate - www.red-gate.com 

 
 
L ǎƛǘ ƛƴ ǘƘŜ ǇǊƻƎǊŀƳƳŜǊΩǎ ŎƘŀƛǊ ŀƴŘ ǘȅǇŜ, ŀƴŘ WŜŦŦ Iƻƭǘ ǿƛƭƭ ōŜ Ƴȅ ǿƛƴƎƳŀƴ ǿƘƛƭŜ LΩƳ ǘȅǇƛƴƎΣ ǎƻ ƘŜ Ŏŀƴ 
see the screen circled in red.  Ron Crisco is currently sitting in the blue chair wingmanning this 
webcast.  {ƻƳŜǘƛƳŜǎ L ƘŀǾŜ ǎƻƳŜōƻŘȅ ǎƛǘ ƻǾŜǊ ƻƴ ǘƘŜ ŎƻǳŎƘ ƛŦ ƛǘΩǎ ŀ tƻǿŜǊtƻƛƴǘ ǎƘƻǿ ǘƘŀǘ L ƴŜŜŘ ǘƻ 
make sure the pixels are big enough for everybody to see from far away.  But we do this fairly 
ŎƻƳƳƻƴƭȅ ŀƴŘ LΩŘ ǎŀȅ ǘƘŀǘ ǿŜ ǇŀƛǊ ǇǊƻōŀōƭȅ ƻƴƭȅ ŀōƻǳǘ мл҈ ƻŦ Ƴȅ ǘƛƳŜΣ Ƴŀybe a little bit less.   
 
 
tŀƛǊƛƴƎ ƛǎ ǿƘŀǘ ǿŜ Řƻ ǘƻ ƳŀƪŜ ǎǳǊŜ ǘƘŀǘ ǿŜΩǊŜ ŎǊƻǎǎ-cultivating the knowledge that is going into our 
ŎƻŘŜ ǎƻ ǘƘŀǘ ǎƻƳŜōƻŘȅ ŜƭǎŜ Ŏŀƴ Ƴŀƛƴǘŀƛƴ ƛǘ ƭŀǘŜǊ ŀƴŘ ƛǘΩǎ ŀƭǎƻ ǿƘŀǘ ǿŜ Řƻ ǘƻ ŜƴǎǳǊŜ ǘƘŀǘ ǘƘŜ ǇŜǊǎƻƴ 
ǿǊƛǘƛƴƎ ǘƘŜ ŎƻŘŜ ŘƻŜǎƴΩǘ ƎŜǘ ƭŀȊȅ ŀƴŘ ǎǘŀǊǘƛƴƎ ǎƪƛǇǇƛƴƎ ǎǘŜǇǎΦ  LǘΩǎ ŀƳŀȊƛƴƎ ǘƻ ƳŜ that as a child, I 
grew up an only child, I never did homework with friends, never had study groups in the lower 
grades at school so I just always considered work to be a solo activity.  But once I started pair 
programming I realised that two people in a pair get far more work done together than if they work 
separately.  The 10% that we spend paired up is some of the most fulfilling programming time that 
LΩǾŜ ŜǾŜǊ ǎǇŜƴǘ ƛƴ Ƴȅ ƭƛŦŜΣ ƛǘ Ƙŀǎ ōŜŜƴ ǿƻǊƭŘ ŎƘŀƴƎƛƴƎ ŦƻǊ ƳŜΦ 
 
The fifth practice is called the Ten-Minute Build and Kent Beck talks about why ten minutes is about 
the right duration for all your automated test suites and your build scripts, Ant or Maven or 
whatever, should run.  He says that practices that you execute every day should reduce your stress 
levels, not increase them and automated build becomes a stress reliever at crunch time.  I did this 
Ƨǳǎǘ ȅŜǎǘŜǊŘŀȅΣ L ƘŀŘ ŀ ǎǘƛŎƪȅ ǎƛǘǳŀǘƛƻƴ ǿƘŜǊŜ L ǿŀǎƴΩǘ ǎǳǊŜ ǿƘŜǘƘŜǊ ǘƘŜ ŎƻŘŜ L ǿŀǎ ǿǊƛǘƛƴƎ ǿŀǎ ƎƻƛƴƎ 
ǘƻ ǿƻǊƪ ŀƴŘ ƛǘΩǎ Ƨǳǎǘ Ƴȅ Ƙŀōƛǘ ƴƻǿΣ L Ǝƻ ǘƻ Ƴȅ ōǳƛƭŘ ǎŎǊŜŜƴ ŀƴŘ L ōǳƛƭŘ ǘƘŜ ŀǇǇ ŀƴŘ L ǎŜŜ whether it 
passes ŀƭƭ ǘƘŜ ǘŜǎǘǎΦ  LŦ ƛǘ ŘƻŜǎ Ǉŀǎǎ ŀƭƭ ǘƘŜ ǘŜǎǘǎ ōǳǘ LΩƳ ǎǘƛƭƭ ŎƻƴŎŜǊƴŜŘ ŀōƻǳǘ Ƴȅ ŀǇǇƭƛŎŀǘƛƻƴ ǿƻǊƪƛƴƎ 
ŎƻǊǊŜŎǘƭȅΣ ǘƘŜƴ ƳŀȅōŜ LΩƭƭ ŀŘŘ ŀƴƻǘƘŜǊ ŎƻǳǇƭŜ ƻŦ ǘŜǎǘǎΦ  ¢Ŝǎǘ ŎƻǾŜǊŀƎŜ ǘŜƴŘǎ ǘƻ ƎǊƻǿ ƻǾŜǊ ǘƛƳŜ ŀƴŘ ŀǎ 
your test coverage becomes more and more complete, when your test runs and passes, it just gives  
you that much more confidence. 
 
This is what it looks like when the world is good: 
 



 

© Red Gate - www.red-gate.com 

 
 
 
 
 
¢Ƙƛǎ ƛǎ ŀ ƭƛǘǘƭŜ ǘƻƻƭǎŜǘ ǘƘŀǘ ǿŜ ǎŜƭƭ Ŏŀƭƭ aw ¢ƻƻƭǎ ŀƴŘ ƛǘΩǎ ǘƘŜ ǘŜǎǘ ǎǳƛǘŜ ŦǊƻƳ aw ¢ƻƻƭǎ ŀƴŘ ȅƻǳ Ŏŀƴ ǎŜŜ 
at the bottom that BUILD SUCCESSFUL took three minutes and 20 seconds to execute and that runs 
all the tests for our tools.  For example, 4119 test might have 15 or 20 command line executions in it 
but it tests a particular feature of the tool called mrcallrm and I know that when all these tests pass 
we have a tool that is ready for release. 
 



 

© Red Gate - www.red-gate.com 

 
 
The first mistake that I want to talk about that I used to make a lot is the big spec mistake.  A lot of 
people believe that the way to do a software project is to write a great big spec that includes 
everything that you might need to put in the product, then that becomes the plan and you lock it 
down.  In some cases the project planners actually leave the project and move onto another project 
and start planning project b, leaving the spec for the builders to make.  In my experience that has 
always been a really big mistake for me.  The testing-is-too-expensive problem is really about what 
do you do when you have a 100 page specification and you want to test to see if your software 
ƳŜŜǘǎ ǘƘŀǘ ǎǇŜŎƛŦƛŎŀǘƛƻƴΦ  ²Ŝƭƭ ƛŦ ǘƘŀǘ ǎǇŜŎ ƛǎ ǿǊƛǘǘŜƴ ƛƴ 9ƴƎƭƛǎƘ ǘƘŜƴ ƛǘΩǎ ƎƻƛƴƎ ǘƻ ǊŜǉǳƛǊŜ ŀ ƘǳƳŀƴ ǘƻ 
read the spec, run the code, look at all the details that the spec describes and make sure that the 
code performs in a way that matches how those things are described in English in detail.  It sounds 
good in theory, but that might take four or five weeks.  It might require a tester to create lots of 
innovative ways to reproduce the cases that are described in English.  So if your test suite takes four 
or five weeks for a human to execute and somebody needs to make a small change in the code, the 
tester really needs to start over with page one of the document again and not very many people can 
do that very many times without starting to skips steps.  Testing to an English specification 
document is really expensive, because it involves labour, it involves somebody that is willing to pay 
close attention over and over doing the same repetitive task and a task like that I think is really 
better executed by a machine rather than a human. 
 
The antigravity problem is the problem that I can actually specify that I want to levitate four tonnes 
of object 19 inches above the ground for a year and a half, and I can write that sentence in English 
ǉǳƛǘŜ ŜŀǎƛƭȅΣ ōǳǘ ƛǘΩǎ ǾŜǊȅ ŘƛŦŦƛŎǳƭǘ ǘƻ ƛƳǇƭŜƳŜƴǘ ǘhat sentence in reality.  The fact is that there really 
are no physical laws or physical constraints on what you can write in English, that is why science 
fiction exists, but when it comes time for somebody to build it they get stuck in the same way that 
my framer got stuck, you can't build an Escher print out of wood, you can build one on paper but 
you can't build one out of wood.  So it's very easy in an English specification, a big spec upfront to 
actually specify things that are contradictory to what is possible.   
 
The gluttony problem is probably pretty easy to understand.  The guy with the word processer and a 
big imagination can put a bunch of stuff into an application that really doesn't belong there. 
 
Then finally the I-know-it's-what-I-asked-for-but-it's-not-what-I-want problem.  It sounds 
undisciplined to say what you want, get it, and then later decide well, that's really not what I want.  



 

© Red Gate - www.red-gate.com 

¢ƘŜǊŜ ŀǊŜ ŀƭƭ ǎƻǊǘǎ ƻŦ ƎŜƴŘŜǊ ƧƻƪŜǎ ŀōƻǳǘ ǘƘŀǘ ƪƛƴŘ ƻŦ ǘƘƛƴƎ ōǳǘ ƛǘΩǎ ŀŎǘǳŀƭƭȅ ǾŜǊȅ ŎƻƳƳƻƴΦ  ¢Ƙŀǘ 
people are unable to describe what they want until after they feel something that is close to what 
they want, then it's much easier to refine than it is to imagine the perfect application from a blank 
sheet of paper.  Kent Beck in the XP book advises that you should maintain only the code in the tests  
as permanent artifacts.  That you should generate other documents from the code and tests.  That's 
really what we do, when we generate our manual pages we generate those based on what the test 
suite does, instead of the other way around.  If you think about this it's really one of the most 
elemental principles behind relational design in that you want to store data only once.  You want to 
store a given piece of information once and only once.  You want the spec in one place, and you 
want the code in one place.  Otherwise you end up with the potential for update anomaly problems.  
The spec in my opinion, belongs in the test suite so that a machine can execute it over and over and 
the code belongs, of course, nobody debates whether the code belongs where the code goes. 
 

 
 
The next thing that blew me away is how awesome regression testing is.  I used to think that only 
huge companies could do regression testing and I found out to the contrary that even our small 
company can afford to do it.  In fact, I would argue now that we really can't afford not to.  It makes 
refactoring so much easier.  If you want to go and change the way you factor some subroutines, as 
long as you keep passing tests and as long as your tests are adequate in their coverage of your 
ǇǊƻŘǳŎǘΣ ȅƻǳΩǊŜ ǎŀŦŜΦ  ¸ƻǳϥǊŜ ǿƻǊƪƛƴƎ ǿƛǘƘ ŀ ƘǳƎŜΣ ƎǊŜŀǘΣ ǎǘǊƻƴƎ ǎŀŦŜǘȅ ƴŜǘ ǿƘŜƴ ȅƻǳ ǳǎŜ ǘŜǎǘǎΦ   
 
 
 
 



 

© Red Gate - www.red-gate.com 

 
The incremental design to me means absolutely better design.  It allows us to make decisions more 
easily and makes those decisions more obvious, it is less expensive and just better.  Basically doing 
incremental design allows us to create much more inspired designs than if you have to sit down and 
imagine everything from front to back on a blank sheet of paper.  In my experience most code that 
people are not satisfied with, is not because the code mismatches the specification, it's because the 
specification mismatches the need. 
 

   
 
Below is the picture that appears inside my brain whenever I talk to somebody about incremental 
design and rapid iteration: 

 



 

© Red Gate - www.red-gate.com 

 
 
Here's a picture of a product that I thought I wanted when I designed it big upfront.  I thought that I 
wanted the product to have a red feature, a purple feature, a gold feature and a brown feature and I 
knew it was going to take time to build this thing.  So the distance from when I imagined this product 
and when I knew the product could be built is quite a long span of time.  Ron Crisco has taught me a 
lot about how to write software projects for release and the way that Ron would do a project like 
this is start with something valuable that runs and then release that.  So we decided in this particular 
product to do the red feature, because the red feature would be helpful and if our software tool only 
did the red feature and we were to perish after creating just the red feature, the red feature would 
in fact be useful and useable to a lot of people.  So we built the red feature. 
 

 
 
The next step, we built a little more and we released, so we built the purple feature and then over 
time we built the gold feature. 
 

 
 
At that point, something magical happened.  We discovered that we really didn't want the purple 
feature after all, after using it for some time and getting accustomed to what it could do, what we 
decided was instead of the purple feature, what we really wanted was the pink feature. 
 



 

© Red Gate - www.red-gate.com 

 
So instead of building the brown feature on top of the gold feature at this point, we decided to 
replace the purple feature with the pink feature, because we discovered that's what we really 
needed and we couldn't have known that, or at least we didn't know that at the beginning when we 
planned this project. 
 
The next couple of iterations were now that we have this pink feature, we really don't like the gold 
feature as much as we would like a blue feature and in the final release we built a green feature on 
top of the blue feature. 
 

 
The experience of using the product over time informed us that the design we initially imagined 
ǿŀǎƴΩǘ ǊŜŀƭƭȅ ƻǇǘƛƳŀƭ ŦƻǊ ǘƘŜ ōǳǎƛƴŜǎǎ anymore and what we ended up wanting is not very much at 
all like what I had initially imagined.  Maybe there are people out there that are so awesome at 
ŘŜǎƛƎƴƛƴƎ ǘƘƛƴƎǎ ŦǊƻƳ ǎŎǊŀǘŎƘ ǘƘŀǘ ǘƘŜȅ Ŏŀƴ ŘŜǎƛƎƴ ǘǿƻΣ ǘƘǊŜŜΣ ŦƻǳǊ ȅŜŀǊǎ ƻǳǘ ƛƴǘƻ ǘƘŜ ŦǳǘǳǊŜΣ ōǳǘ LΩƳ 
just not that guy.  I am pretty good at taking something that works and making it better, but I'm not 
nearly as good at taking nothing and turning it into something elegant. 
 



 

© Red Gate - www.red-gate.com 

So what we've got here is three things I want to focus your attention on.  Firstly, we were able to use 
the red feature much earlier in the top project picture than we would have been able to use 
anything in the bottom project picture. 

 
{ƻ ŀǘ ŀ ƎƛǾŜƴ Ǉƻƛƴǘ ƛƴ ǘƛƳŜ ƛƴ ǘƘŜ ōƻǘǘƻƳ ǇƛŎǘǳǊŜ ǿŜ ǎǘƛƭƭ ƘŀǾŜ ƴƻǘƘƛƴƎΣ ōǳǘ ƛƴ ǘƘŜ ǘƻǇ ǇǊƻƧŜŎǘ ǿŜΩǾŜ 
got the rŜŘ ŀƴŘ ǘƘŜ ǇǳǊǇƭŜ ŦŜŀǘǳǊŜΣ ǎƻ ǿŜΩǊŜ ŀǘ ƭŜŀǎǘ ŀōƭŜ ǘƻ ǳǎŜ ǎƻƳŜ ǎƻŦǘǿŀǊŜ ŀǎǎƛǎǘŀƴŎŜ ŦǊƻƳ ǘƘŜ 
project at this point. 
 
I've already talked about how experience informs the design so the design actually changes for all 
the right reasons because as we use the software we decide what we really wish the software did.  
Instead of what I thought I wanted it to do, I wish it would do something slightly different.  Then in 
the end you've got a better design because the upper software is informed by actual use and 
experience, whereas the lower software was informed only by someone's imagination.  So it's better 
all round.  You get use out of it earlier and you end up with a better design by the time you're 
finished. 
 
 



 

© Red Gate - www.red-gate.com 

What Has Not Worked 

Probably the most damaging aspect of a project that is attempting to be an Agile project is the 
absence of a customer that has these five attributes, acronym: C.R.A.C.K. 
 

 
If a customer representative isn't on the product team that is collaborative and willing to talk about 
things, representative meaning that this person has the best interests of the users that this 
application is going to be distributed to.  Authorised meaning that the company has given this 
person power to decide what goes into the software and what doesn't go into the software.  
Committed, meaning that he cares and knowledgeable meaning that the person understands what 
the real needs are of the people are that he is representing.  If nobody in the project will say no, so 
everything gets a yes.  I've been on projects before where there is no real CRACK customer and it's 
suicidal.  Basically, the team doesn't know what to do so it makes it up as it goes along.  Most 
members of a team, if they're responsible human beings, will try to add more and more things 
hoping that this imaginary customer will be happy with having more and more things in the 
application and it's what causes applications to end up having 80% of its code path never being 
executed by anybody.  It's what causes projects to go over time and over budget.  The absence of a 
customer with these attributes is absolutely an Agile project killer. 
 
The second one, ironically, not enough customers is bad, too many customers is just as bad as having 
no customer.  You've got to remember a great design is just as much about saying no as it is about 
saying yes.   
 



 

© Red Gate - www.red-gate.com 

 
 
If that's vexing to you, think about the iPod, think about a device that does not have an on-off 
ǎǿƛǘŎƘΦ  WƻƴŀǘƘŀƴ LǾŜ ŀƴŘ {ǘŜǾŜ Wƻōǎ ŘŜŎƛŘŜŘ ǘƘŀǘ ǘƘŜȅ ǿŜǊŜ ƎƻƛƴƎ ǘƻ ǇǳōƭƛǎƘ ŀ ŘŜǾƛŎŜ ǘƘŀǘ ŘƛŘƴΩǘ 
have the most elemental switch that every other device on the planet had, but they designed it 
simpler and more elegantly because they knew what features to say no to and they knew that an on-
off switch was superfluous, the product ought to be able to know when you need it on and when 
you need it off by itself. 
 
 



 

© Red Gate - www.red-gate.com 

 
The next one is cultural mismatch.  Agile is all about decentralisation of responsibility and 
accountability into the hands of the people who were technical enough and knowledgeable enough 
to be able to do the job correctly.  If you try to do an Agile project in a centralised organisation 
unfortunately all you end up with is hypocrisy.  What you end up with is a centralised organisation 
that can't let go, trying to claim that it is letting go, but it's not.  Agile requires openness and honesty 
about where the failures are.  If you're in one of the types of projects that the management cannot 
stand to admit that anything is imperfect then Agile is not for you.  Basically the whole key about 
Agile is that you want to try to find out where the failures are as early as possible so that you can 
redesign and surmount them. 
 
 
 
 
 



 

© Red Gate - www.red-gate.com 

 
 
The final point is about talent mismatch.  Basically if you have a team that is not disciplined or not 
self-disciplined and you try to inǘŜƎǊŀǘŜ !ƎƛƭŜ ǿƘŀǘ ȅƻǳΩƭƭ ŜƴŘ ǳǇ ǿƛǘƘ ƛǎ ŎƘŀƻǎΦ  ²Ƙŀǘ ȅƻǳϥƭƭ ŜƴŘ ǳǇ 
ǿƛǘƘ ƛǎ ǘƘŜ ƧƻƪŜ ŀōƻǳǘ ά¢ƘŜȅ Ƴǳǎǘ ōŜ ŘƻƛƴƎ !ƎƛƭŜ ƛƴ ǘƘŜ ƪƛǘŎƘŜƴέΦ  .ŀǎƛŎŀƭƭȅ ƻƴ ŀƴ !ƎƛƭŜ ǇǊƻƧŜŎǘ 
participants have to be good at design, they have to be good at optimisation, sometimes they even 
have to be good at process optimisation.  Sometimes they have to be able to look at what they're 
doing and decide that in order to do this we need to do it a different way.  A key skill in any Agile 
project is the ability to factor a project so that it produces running, valuable software every few 
weeks.  Now the value of your n might be two, it might be one, it might be 36, but basically if you 
decide what your iteration length is between product releases, the ability to continually chunk out 
pieces ƻŦ ǎƻŦǘǿŀǊŜ ǘƘŀǘ ǿƻǊƪΣ ǘƘŀǘ Ŏŀƴ ōŜ ƛƴǎǘŀƭƭŜŘ ŀƴŘ ōŜ ǊǳƴΣ ǘƘŀǘΩǎ ǘƘŜ ƪŜȅ ǎƪƛƭƭ ǘƻ !ƎƛƭŜΦ 
   

 



 

© Red Gate - www.red-gate.com 

Q+A Session 

Q. On the legacy product waterfall methodology is used, and we're going to move 

to Agile/Scrum, what are some of the things we should be careful of or look out 

for? 

A. I think the cultural mismatch issue and the talent mismatch issue.  There's a really 

good blog post that I saw two days ago, I Tweeted it, it was called ‘Briefly about 

Agile’ (seldo.com) and the blog said “When I hear Agile I hear cargo cult”, and it’s a 

very short blog post that says that basically a lot of people who implement Agile are 

really only implementing the things that are their favourite sounding parts.  They 

might implement the idea that they don’t need to write big, complicated 

documentation.  The problem that not writing big, complicated documentation solves 

is that you don’t have to have a big complicated team that had got big complicated 

integrations with your development team who are updating big complicated 

documentation.  So that’s one problem solved.  But if you don’t have anything to 

replace that big complicated documentation, for example, you don’t have a 

comprehensive high coverage test suite, then you’ve got a huge gap in your project.  

So what I see happening in a lot of sites that call themselves Agile is they’re not 

really following the disciplined practices of having an integrated test suite that runs 

within ten minutes of clicking the build button.  What’s happening is they’re taking 

what they like but they’re not taking the part of the process that requires hard work 

and actually fills in for the part of the waterfall process that they’re taking out.  So 

what I’d advise you to do, the biggest pitfall is that if the team are not capable of 

doing design or not empowered to do design by their organisation as they work, then 

Agile is not necessarily going to end well, if the culture of the company that is doing 

the project doesn’t allow for failure.  Agile is about failing fast so that you can fix it 

quickly.  It’s not that your goal is to fail, your goal is that if a design element is 

destined to fail that you fail quickly so that you can fix it early so that your product can 

have a better design suitor.  If a company’s leadership is culturally opposed to 

anything having to do with failure or admission of failure then Agile is really going to 

be difficult to pull off. 

Q. What are the limitations and advantages of Agile application design compared 

with ITIL or waterfall in software application design for development and 

deployments? 

A. One of the limitations of Agile is that you really have to have a different staffing mix 

than you can in a more upfront, planned type of project.  There’s a really good book 

called Balancing Agility and Discipline written by Barry Boehm and co-authored by  

Richard Turner and they talk in great detail about what your project staffing mix 

needs to be in order to pull Agile off properly.  You basically need to have much more 

senior, much more mature, but much more out of the box thinking project participants 

on an Agile project than if you have a more traditional waterfall type of project.  

Remember, what waterfall is intended to do is take large groups of people who are 

not necessarily that inventive or highly trained, in other words people that don’t cost 



 

© Red Gate - www.red-gate.com 

as much, and allow them to get something nice done.  So the advantage of waterfall 

is that it’s an attempt to separate thinking from doing, so you put the highly paid, very 

expensive thinkers at the front of the project and then you try to release them as 

early in the project as you can to save on cost, then you pass off the work to people 

that don’t cost nearly as much.  If you think about the construction industry, that’s 

how you tend to think highways get done.  You’ve got somebody in an office who is 

drawing up pictures and thinking about queuing theory and where to place the traffic 

lights, you don’t want your builders out there just throwing up stuff and seeing if it 

works, you need an architect.  Then as the build progresses, if it’s a project that’s 

been done six thousand times in the past 15 years, you can be reasonably certain 

that the plan is going to work because it’s been thoroughly debugged.  Agile has an 

advantage in applications that are executed using a plan that has not been 

debugged, projects that have never been done before, but it requires a certain type 

of staffing skills mix that you may not be able to afford.  So the downside of waterfall 

is that it tends to diminish the individual creativity that the better people on the team 

may have.  The upside of waterfall is that you’re supposed to be able to use lots of 

expensive and experienced people and get a reasonably good job done.  So part of 

how you should decide which process to use depends on what are you trying to 

accomplish.  If you’re trying to accomplish something fairly mundane that has been a 

lot of times before waterfall probably is a better way to do it.  If you’re trying to 

accomplish something that’s never been done before then you probably need to have 

lots more rapid iteration, lots more incremental design, lots more integrated testing 

and the things that Agile really brings. 

Q. My team have been having trouble in limiting our Scrum meetings to 15 

minutes, often we take 25 minutes to an hour and 15 minutes.  Do you have any 

tips to reduce it and keep the discipline? 

A. I’m not a Scrum expert by any stretch of the imagination.  I used to host a morning 

stand up meeting at a prior company that I was at and to be honest the main reason I 

did that is because the culture of the company required that there be a meeting so 

that somebody could take notes so that the management of the company could know 

what was going on in the development team at all times.  But honestly it didn’t help 

the development process very much for us and I’ve taken the advice of a gentleman 

named Jason Fried at 37signals and his book called Rework.  One of the chapters in 

Rework is called ‘Meetings are Toxic’.  At Method R Corporation we don’t have 

meetings anymore, I can’t think of the last time I had a meeting that took longer than 

a few minutes.  Now we do pair up and sometimes we have three people in a room 

talking about something very specific and I don’t know if this is particularly helpful 

advice, but I have found that by eliminating almost all the meetings I used to have I 

haven’t lost anything.  When I need to know something technical or I need to share a 

design idea to make sure that it’s valid there are one or two people I pull into the 

room with me, we discuss it and we move forward.  Having said that, the software 

that we design here doesn’t typically have a lot of integration points, so there’s not six 

different interface groups that need to be aware of everything that’s going on every 

time we make a decision.   



 

© Red Gate - www.red-gate.com 

My advice is to grab a copy of Jason Fried and David Heinemeier Hanssone’s book 

called Rework and see if that might give you some good ideas. 

 

Q. Design upfront versus incremental design – isn’t there a huge possibility of 

needing to change the fundamentals of the design half way through when you 

start adding new requirements? 

A. That’s one of the places where the talents of your team is a huge determinant in 

whether you will succeed or fail.  The whole thing I said at the end about factoring – 

factorisation.  Ron Crisco is my product development director and his presentation 

next week at ODTUG is about how do you do data modelling in an environment 

where change is inevitable and it’s unpredictable.  Because one of the things that 

people talk about being a huge deficiency of Agile is when they misunderstand and 

think that incremental design means no design and then people think that Agile 

means you don’t do data modelling.  You absolutely have to do data modelling if 

you’re going to use a database in your project because there are so many things that 

mess up if you don’t have a sound data model.  You can’t have a high performance, 

highly scalable application if you don’t have a sound data model.  There is the 

possibility that you get a third of the way into the project and discover that your data 

model is just not good enough and I don’t have a set of examples on the tip of my 

tongue that I can tell you about, but Ron has been putting together a sequence of 

presentations on this.  Fundamentally the goal is to make sure that the things that 

you do design and you do lay down into concrete, so to speak, are well done and that 

they’re extensible.  An Agile project in which the data model ends up having 27 

copies of the same data because basically the model was just accreted by different 

people and never really rationalised or centrally controlled or made elegant, that is 

not what you want.  It is not a good data model if that’s what you end up with.  The 

bottom line is if the model needs to change a third of the way or half way through the 

project then it needs to change a third of the way or half way through the project.  

The level of talent of people that are designing the data model and their experience 

with doing rapid iteration is going to minimise the impact of needing to do that on the 

occasion when you do need to do it. 

Q. What has been your experience with on site and off shore development 

centres?  Does Agile work with that?   

A. Again, it depends very much on the talent mix that’s involved in the project.  We’re 

actually involved as a vendor except we do some consulting on the side, it’s a little 

more than just on the side, we have one very large project that’s actually in its third 

year of execution and we’ve been writing PLSQL code for a large company and we’re 

basically an off shore development team for them, although they’re also in the US 

and we are too.  We live a two and a half hour flight away from them, so we 

exchange specifications through e-mail and we participate in quite a few phone calls 

with them that constitute meetings where we’re having technical conversations about 

how the spec needs to be designed.  The same company has off shore teams in 



 

© Red Gate - www.red-gate.com 

India that they have a completely different relationship with.  I guess we are a much 

more experienced team and it doesn’t have anything to do with whether we’re in the 

US or India, but our team has experience and the team in India is much lower priced 

and consists of much less experienced developers.  Those guys require a spec to be 

sent to them and they code to the letter of the specification.  If something doesn’t 

make sense in the spec they will ask a question to try to resolve the ambiguity but 

there’s not a whole lot of attention paid to trying to improve the spec in that other 

relationship.  The relationship our customer has with us is that we’re expected to be a 

partner in creating the specification for the software that we’re writing.  We’re 

expected to interface with the other teams and think ahead so that we’re actually 

designing along with our client as we write our code.  We’ve just returned from a site 

visit last week in which we talked about the Agile processes that we use, the 

automated test suite, we don’t like documentation for documentation’s sake, but 

there are some cases in which you absolutely have to have documentation to be able 

to lock down what the specification is between two teams that live in totally different 

time zones.  For us we don’t have the same amount of documentation as the 

company does with their Indian off shore team, but again, it’s because of the role that 

we play.  So I think that Agile works in so called off shore environments but it really 

comes back to what is the talent that’s involved and that helps define what level of 

detail is required in the documentation that has to be transmitted back and forth 

between the teams. 

Q. What is the relationship between XP and Agile? 

A. The XP book was written 1999 and does not have the word Agile in it that I could 

find.  I actually searched in Google Books and I could not find the word Agile.  As far 

as I know it does not appear in Kent Beck’s book.  I subsequently found out that the 

word Agile was chosen by a group of 12 authors.  Basically a group of likeminded 

people, Kent Beck included and a bunch of other people from Pragmatic 

Programming, from Scrum and from several other disciplines that had similar 

attitudes that Kent Beck had.  They got together in Colorado and had a meeting for 

two or three days and tried to sit down and decide what they agreed upon.  The 

principles they agreed upon they wrote down in a thing called the Agile Manifesto 

and the 12 authors put their names to this manifesto as the core values that they all 

thought represented what they did.  The word Agile is really kind of a rollup word, 

therefore.  I think as Agile as the parent node in a tree that beneath it contains XP 

and Scrum and Pragmatic Programming and several other methods that were 

created before the word Agile existed.  But they all have the same sort of spirit of 

we’ve got to figure out a way to add discipline to responding to change.  So the word 

Agile is the parent of a tree that has leaves that include things like XP and Scrum. 

 

 



 

© Red Gate - www.red-gate.com 

Q. How do we reconcile Agile practices against SOX and HIPAA and other legal 

mandates that tend to lead towards centralised committees and information 

governance? 

A. That’s a really good question and I don’t know.  I do believe that it’s a similar issue to 

what an aerospace company would have to deal with.  A place I would look for 

maybe some inspiration is the story of Kelly Johnson and the Skunk Works group at 

Lockheed, basically we’re talking about an industry that is heavily regulated, it’s a 

military industry.  Kelly Johnson was an aerospace engineer that is responsible for 

the design of the Lockheed P-38 Lightning fighter that the allies used in World War II, 

the F-104, the U-2 spy plane, the SR-71, those all came out of Kelly Johnson’s 

Skunk Works operation in Southern California near Long Beach.  I know that that’s a 

heavily regulated and heavily authoritarian type of an industry and if you read Kelly 

Johnson’s rules for how they did some of the remarkable things they did, they’re very 

similar to what the Agile guys talk about in their Agile Manifesto and the principles 

behind the Agile Manifesto.  The way that I would try to think about it is to think in 

terms of how a group works inside versus its interface with the outside world.  The 

story I told about us and our customer is similar to this, we are actually Agile inside 

our company doing a project as a subgroup of a company that is not particularly 

Agile, that we’re feeding software back to.  Now our project has been so successful 

that they’re interested in learning more about Agile, but they themselves are not Agile 

but we are as a component.  It’s very similar to how you implement a module and 

how you publish when its interfaces are different.  So perhaps your team can be 

Agile and operate within its boundaries as an Agile team, but if a document is 

required because of HIPAA, for example, or Sarbanes Oxley, you have to create that 

document as an output of your team and you might create that document in an Agile 

way.  For example, you might try to find tools to automate as much of the document 

creation as possible, but if that’s a requirement of your project because of the 

governance that surrounds your project, then obviously it’s just as important as an 

output for getting paid as the code that you produce.  It just comes down to 

understanding what your API with the outside world is as a project team and where 

you have liberty to choose how your project team can operate within its own 

membrane. 

Q. The older spiral methodology as well as rapid prototyping methodologies seem 

similar to Agile, do you see major differences with Agile and these 

methodologies? 

A. If you think about what incremental design and a rapid release cycle means it’s very 

much like the old spiral or rapid prototyping methods.  I think perhaps Agile is 

different in that it incorporates a broad variety of other practices as well: the pair 

programming and the ten-minute build. Those are almost like ornaments on the 

fundamental tree of the rapid prototyping idea.  Basically rapid prototyping is about 

“Hey, I don’t know if this thing is going to fly to the moon, I don’t even know if it’s 

going to fly off the backyard, so let’s create a model first, see if that will fly. Then we’ll 

see if we can scale it up, then we can see if we can put a guy in it, then we can see if 

we can put it into orbit, then we can see if we can get it out of orbit, then we can see 



 

© Red Gate - www.red-gate.com 

if we can get it to the moon, then we can see if we can land it on the moon.”  If you 

think back to a project as large as Apollo for example, that’s basically how they did it.  

It may sound like a big design upfront but they did lots and lots of missions that 

taught them what they needed to know before they could ever design the next 

mission.  We had to put people into orbit before we could kick people out of orbit.  

We had to orbit the moon before we could ever decide to land on the moon.   

So I think in the days when that happened what they were doing was called rapid 

prototyping and in the software development world I think that’s really what Agile is, 

is rapid prototyping.  But added with it a lot of things that tools can enable us to do to 

basically...I don’t know, it seems like Agile is a bigger kit to me that explains how to 

do some of the loose end details that you have to do day in and day out on a project 

in order to succeed. 

Q. Do you in any way capture anything in a modelling tool afterwards?  So for 

example, capturing tables and putting it in an entity model, or capturing 

business rules in codes to make it readable afterwards? 

A. On the project that we’re doing that I keep referring to one of the things that we’re 

required to do is to produce an entity relationship diagram for the project team that 

we’re working with so that they can understand the structure of the tables that are in 

the schema that we created.  Of course that changes from time to time and we have 

to keep the remainder of the project team updated with what those changes are.  

What we try very diligently to do is to make sure we record that information in the 

database where it counts, and then we generate the documents based on that.  So 

it’s like our source code is the actual create table statements and the actual alter 

table statements and create index statements – that’s our source code.  The 

documents are created automatically by using tools to generate what the schema 

looks like, so any pictures that we draw are not drawn by hand, they’re derived from 

the source code, so to speak, of the create table statements that we’ve generated.  

The remaining documentation, we write a lot of code with PLSQL and I believe we’re 

actually pulling comments out of the PLSQL to create the user documentation.  We 

have, for example, an Open Source tool called ILO at SourceForge, it stands for the 

Implementation Library for Oracle and that’s how the documentation for that is built.  

It’s basically extracted from comments within the code so our documentation and our 

source code are really one and the same.  In our MR Tools product they’re written in 

Perl and the documentation for the tools themselves are written inside the Perl 

source code.  So it’s one file edit, from writing the documentation about a paragraph, 

the code that is right next to the documentation that describes it.  So back to that 

fundamental rule of relational design, you want to store data once and only once, well 

if you have different formats in which you need to publish given data, what you need 

to do is figure out what your source code is for that format and then try to find tools.  

That’s one of the reasons Red Gate and Method R are friends because Red Gate is 

one of the key providers of tools that allow you to do things like schema reporting and 

schema differentiation and data differentiation.  You don’t want to have to do that 

stuff by hand, you want to be able to have tools that help you do it. 



 

© Red Gate - www.red-gate.com 

Q. What is the biggest challenge when implementing Agile methods?  Can you 

elaborate more on the Agile method and database modeling in database 

architecture? 

A. To the first question, the biggest challenge is to make sure that you don’t view an 

Agile system as a bunch of buzzwords and a bunch of ceremonial things, that if you 

do those everything is going to be all right.  Agile is a bunch of work.  If you decide 

you’re not going to write a big complicated specification in English, well then you 

need to write a big complicated specification in code, you’ve got to fill the gap one 

way or the other.  I’m a huge proponent that a specification should be written to be 

machine executable as opposed to human executable, but that takes work.  I think 

one of the reasons that Agile methods have such a bad name among my DBA 

friends is because the way that they see them implemented is that people just pick 

off the stuff that’s easy and they don’t do the compensatory things that are difficult 

and so they end up in a rut, they end up with no spec whatsoever.  They don’t have 

tests, they don’t have an English document, they saying they’re doing Agile and all 

that does is make Agile look bad. 

 In answer to the second question, one of my good friends that used to work with me 

at Oracle is named Dominic Delmolino, he’s on Twitter and he talks a lot about 

database and Agile.  If you just follow his Twitter stream you’re going to get loads of 

pointers to different sources of information.  Ron Crisco is an expert in the same area 

and he’s speaking next week at ODTUG about data modeling and rapid iteration 

projects.  There’s a good book called Database Refactoring.  There are places out 

there in the market to help learn more about how to do rapid iteration and 

incremental design using databases.  I think one of the reasons it’s so hard to 

redesign a database model is that the tools market is relatively immature.  Red Gate 

is early to the table really in providing some of the tools that it creates for the Oracle 

database administrator and Oracle database developers.  There’s not a whole lot of 

good competition out there that helps people refactor databases and there are really 

two big problems: one is the schema differentiation, a developer changed six tables 

and needs to communicate to the DBA what they changed, so then the DBA can 

rationalise and publish that schema change for everybody else in the project.  Well 

noticing what’s different about the schema is only half the battle, maybe even less 

than half the battle.  The rest of the battle is “Hey you added a column, what data did 

you put in that column? So what data in this database is different based on what you 

the developer did by adding a column to this thing.”  Of course it’s probably not 

driveable data from anything that was previously in the database or you wouldn’t 

have needed to add the column.  So it’s a big complicated job to refactor and if 20 

years ago somebody had said, “Yeah, I want to take all instances of these five lines 

of code out of my project and turn them into a function call,” the developer would 

have been aghast.  They would have said, “Oh my God, that’s going to take me three 

weeks to do that,” whereas today in Eclipse you can do it in 20 minutes.  The tools 

are just much more mature on the developer’s desktop than they tend to be on the 

database administrator’s desktop for doing refactoring.  It’s one of the reasons that 

I’ve been following Red Gate because they seem to be the leaders, even ahead of 



 

© Red Gate - www.red-gate.com 

Oracle and some of the more established players in the market, in understanding that 

these things are gaps that need to be filled with good tools. 

Q. Do you have suggestions with respect to programming standards at the 

beginning of a project?  One project that Chris was involved with was so 

focused on speed of development that management rejected his proposed 

requirement that all SQL used by the php web server be expressed within a 

packaged procedure.  When the data model was later changed, we were not 

merely rewriting SQL but negotiating all the interfaces between the web server 

and the database server. 

A. If I were to write a book about ten mistakes you need to watch out for, that’s probably 

number one or number two.  There’s a concept called ‘technical debt’, that’s basically 

a story about unpaid technical debt.  Think about what debt is with money, debt with 

money is spending money that you don’t have but you’ll earn it later and pay it back 

later.  That’s essentially what you do when you compromise code quality for speed.  

Speed to market means “I’ve got to get this thing done in two weeks, I don’t have 

time to make packaged procedures out of my SQL. So what I end up with now is I’ve 

got SQL in my php, my product works, I’ve released it. Now we’re starting to make a 

little bit of money because some customers like it, but they need six new features.  

So instead of spending next week fixing my code so that it’s easier to maintain later, 

I’m adding six new features to my code.”  Ultimately your debt catches up with you, 

there is no more that you can borrow, you hit your credit limit so to speak, and what 

has to happen at that point is you have to stop and start paying it back one way or 

the other.  The story that Chris told in his question ended with the abrupt realisation 

that something that should have taken 20 minutes to do, will now take four weeks 

and that’s the interest on that debt.  So as you continue to leave yourself in technical 

debt and add more and more features to your product, you’re basically compounding 

the interest that you’re going to have to pay back on that technical debt.   

 Basically what I find Agile gives me is because of the regression testing suite that I 

have, it makes getting out of technical debt, putting the SQL into packaged 

procedures and making an API, it needs to be done.  I’m a fan of releasing a product 

that works before having done all that, I think that’s a fine idea, I think the place that 

the refactoring needs to take place is after the project has been demonstrated to be 

viable.  I think that the gap in the story that Chris told is his management’s 

appreciation of what the cost is of continuing to hold that technical debt as the 

product gets extended and extended.  I think the right place to go fix that problem is 

not to have delayed the product’s release in the first place by doing a complete 

architecture design to put all the stuff in store procedures.  I think that proving the 

concept that the application works and is saleable was a good thing, but I think that 

somewhere between version one and version two or three there needed to have 

been a feature added that customers don’t necessarily, that doesn’t show up in the 

marketing material, that is “Look guys we’ve got to go and refactor this code so that 

it’s easier to maintain later, because we don’t want to get caught out.”  There’s a 

number of reasons that you want your PLSQL interfaced instead of having SQL 

sitting in php pages.   



 

© Red Gate - www.red-gate.com 

There are a lot of performance reasons, you don’t want to be passing long strings of 

SQL between a client and server for example.  There are security implications, there 

are horrific performance implications of that implementation inside the database.  As 

Knuth said 31 years ago, you don’t optimise before you make sure that the thing 

works and in the software industry ‘the things work’ is not just does the code run, but 

is somebody willing to actually trade their hard earned cash for our code.  I think the 

place that the mistake was made was not necessarily in releasing before the 

architectural work, but continuing to release without going back and revisiting the 

architectural work. 

Q. Are there any publicised white papers that show some detailed examples of 

successful Agile development projects? Are there any public training sessions 

coming up this year that are hosted by Method R?   

A. Off the top of my head I don’t know, if I need to find them I would start with Google 

personally.  There is one blog called agilewarrior.wordpress.com.  A Google search 

is going to result in a rich answer to that question. 

 

 

-   -   -   -   - 

  

 

Cary Millsap 

Cary Millsap is an Oracle ACE Director, president and founder of Method R Corporation, 

former VP at Oracle Corporation, founding partner of the OakTable Network, Oracle 

Development Tools User Group "Editor's Choice" 2010 award, and Oracle Magazine's 2004 

Author of the Year. 

 

http://method-r.com/
http://www.oaktable.net/

