My Case for Agile
Development

Whitepaper based on original
presentation by Cary Millsap,
commissioned by Red Gate Software

([

(

ingeniously simple tools

My Case for Agile Development

This article will cover the following agenda:

1. Agile and me
2. Five practices from XP

3. How Agile has helped me
4. What has not worked
5. Discussion

Agile and Me

This section begins with a joke and it’s a true story about a joke. Six or seven friends and |
were sitting around a dinner table one night in Denmark a few months ago—we’d known each
other for a really long time—enjoying a drink before the food got there. We’d ordered already,
it took 15 extra minutes or so, we expected we’d be eating by now but the food hadn’t
arrived. Finally the food started to arrive and none of it was right. The first guy said, “Hey, |
ordered French fries not mashed potatoes,” and the second person was complaining, “My
meat is overcooked, | ordered it rare.” The waiter, confronted with so many mistakes started
apologising to us at the table and told us not to worry, he’'ll get it fixed as soon as he could.
One of the database administrators at the table piped up with the comment “Ah, they must
be doing Agile in the kitchen.”

That’s what Agile is to the database administrator community that I’'m a part of and it's
basically one more thing that developers and database administrators have to fight about.
The relationship between database administrators and developers in the north of the
universe is not always the smoothest in the world and | assume it’s probably similar in other
product disciplines. But my job is to take DBA communities and developer communities and
mash them together so that they can cooperate more fully, and that’s really the spirit in
which | offer this today. Fundamentally, as mostly a developer, but a developer who has
been immersed in the database administrator community for the last 20 years, | really truly
believe Agile has a lot of good to it, but a lot of database administrators don’t see it because
the way it is presented to them makes it completely disgusting for them.

ingeniously simple tools

The first realisation that I'd like you to contemplate with me, and this is my own realisation in
running a business as a software development company, is that change is for the most part
unpredictable, it's absolutely inevitable, it's multidimensional, it's complex and it's a number
of other things that make dealing with change really difficult.

Change is unpredictable, inevitable, multidime

However, responsiveness to change is an advantage.

2

Responsiveness to change is an advantage.

Now a lot of people don’t like change, they think that their job is to prevent change from
occurring, but as a business leader change is something that you need to embrace and it’s
something that you need to be able to handle well. There are all sorts of reasons that things
change and I'll talk about a lot of them as we go through the paper, but being able to
respond to that change is an advantage.

The third realisation and this is about a ten year old realisation for me, is that traditional
design build methods were just not working for me, there were several problems which I'll
explain in due course.

2

nal design-build methods
re not working for mi

ingeniously simple tools

| happened to come across a book called Extreme Programming Explained, in other words
XP explained. It has on the cover the phrase ‘embrace change’ and basically within that
book I've found a discipline for responding to change. Those of you that have experienced
Agile in a bad way are probably are thinking, “Wow, | thought that Agile and discipline were
antonyms,” but actually | want to convince you that Agile is not a synonym for undisciplined,
and if Agile looks undisciplined to you then the people who are doing what they call Agile are
just doing it wrong.

This Venn diagram is the set of all developers in the world, and | think that Agile is a fairly
popular thing for people to say that they like or believe in.

Believers of
agile values and

Developers
\ principles

Disciplined agile
practitioners

But the disciplined practitioners of Agile are a very small subset of that set of developers
who say they like Agile and this isn’t really any big surprise, the whole world works this way.
Everybody in the world is the big duck egg green circle and there are few people in the world
that say something and there are far fewer that actually do the thing they say.

Says X

Everyone \

Does X

ingeniously simple tools

This article takes its inspiration from a book written by Kent Beck with Cynthia Andres called
Extreme Programming Explained and the two fundamental core rudders in the book are
basically that the purpose of software development is to satisfy the customer through early
and continuous delivery of valuable software and that working software is the primary
measure of progress. This rang a bell for me because back in the early 2000s | was
attempting to create an optimisation method for Oracle database applications that would
work uniformly across performance problem domains. Where | started was with this brilliant
book written by a gentleman named Eli Goldratt who, I'm very sad to say, passed away in
2011, but The Goal is a book about optimising the manufacturing process. As The Goal is to
the process of manufacturing optimism, the book that Jeff Holt and | wrote called Optimising
Oracle Performance | hope, has the same relationship to database application optimisation.
Goldratt’s work really inspired our work and our method is very similar. It’s, in fact, derived
from Goldratt’s method. What | found in Kent Beck’s book is that his book actually has the
same relationship to software development optimisation - basically the key of Extreme
Programming Explained is to keep your eye on the overall goal of the process of software
development and basically evaluate or optimise the process based on the impact of every
decision you make upon that overall goal.

My 11 year old son is a professional baseball player and we travel with him and take him to
games all around the US and there’s another book called Moneyball written by Michael
Lewis that actually is bizarrely similar to the other three books and it's about baseball club
optimisation. So it's very interesting how many different disciplines have the same approach
to optimising that Eli Goldratt started roughly 20 years ago.

l{ymnu:

Togramming

\ Explained
R] t e O »

O

Manufacturing Database Application Software Development Baseball Clud
optimization optimization optimization optimization

As Goldratt explains, the global goal for an organisation, whether it's a profit or non-profit
organisation, is to leverage its resources under its control as well as possible. He uses the
three metrics: net profit, cash flow and return on investment as the things you want to
maximise pretty much no matter what kind of a business you are in. Why Agile? Well it's
because | want better net profit, cash flow and return on investment, | also want higher
guality — this is one of the ways you get better net profit, cash flow and return on investment.
| also want more fulfilment from my developers and myself; when | write a product | want to
feel better about it, and | want to enjoy doing it more, and Agile gives me these things. So |

ingeniously simple tools

do Agile for these reasons, not because it's easy — as a matter of fact doing Agile correctly is
extremely not easy.

Agile?
better @ netprofit @ cash flow @ return oninvestment
higher quality

ore fulfillment

re enjoyment

Not because it’s easy.'

ingeniously simple tools

Five Practices from XP

The first practice is called Incremental Design. One of the reputations of Agile isdat8odzd G R2 y Qi
do desig. |think a lot of peoplase Agile as a caricature or cartoon for bad project management.

Incremental Design

The question is not whether or not to
design, the question is when to
design. Incremental design suggests
that the most effective time to design
is in the light of experience.

Kent Beck

¢tKS gle (KFd (GKSe g2dzZ R RSTAYS ! 3AtS A
Fy@idKAY3IZE | yR (KL Ho@aseddtandlhiiwg isSAgiey B2 dzyi @
Kent Beck in his XP book describes it:

2 alé o
NJO2 2lzy (i S NJ

B Q¢

G¢KS ljdzSadAzy Aa y20 6KSGKSNI 2N y24d G2 RSaA3a
Inc“remental design suggests that the most effective time to design is liglthef
SELISNRARSYyOS ¢

Fundamentallythe problem that incremental design is meant to address is that plans fail. No
matter how carefully ya plan for the year prior to t# project, when you try to create a complete
airtight plan that is going to defineehaviour of a project team for the following five years, plans fail.

My wife and | built a house about 13 years ago and we built it from &xisting design where the

architect allows younowto stretch a closet into a little bitf adifferent shape but not materially

change the layout of a house too much. So we picked a pidettgnt plan anadnade a few minor

customisations to itOne day when | walked out onto the site when the framers were putting up the

wood to frame out the shape of the houglge leader of the framer company came over to me and

saidal Sex L glyd G2 a1l e2dz I ljdzSadAzys (GKA&a LI Iy
GKSOGKSNI @2dz ¢l yd YS (G2 R2 A0 GKA&A gl @& 2N3 0KIOG 41
AYLI2AaaAofS G2 AYLXSYSyld Ay NBlLIftAled LF &2dz 61 yi
what my plan had been and the framer just wanted to know how to resolve the ambiguity. So there

are ways to prevent a failed plan from failingyodt® 2 SO0 FyR (KI 0Q&a gKI G (KAS3
incremental design is all about.

Now traditionally,and| say traditionally because it extends through the beginning of our lifetimes,
but this traditional is only about 100 to 150 years didckin the time ofFrederick TayloHis job of

ingeniously simple tools

trying to automate production and assembly lines meant that in order to optimise an assembly line
he needed to separate the thinking from the doing.

So basicallytraditional design build processes have thinkers front kxhth the project over in the
following domain:

P

DESIGN - — CONSTRUCTION

TRADITIONAL DESIGN-BID-BUILD

When construction starts the thinkers go off to another project and now the builders come in and

0dZAf R gKIG GKS GKAY{SNAR (K2dAKG dzLdd ¢KS LI LYy ASZ
need to k& a whole lot of thinking after construction begins. In the software industgyexperience

isthat i KI G 2dzad R2Say Qi 62N)] 2dzi GKS gl & AidQa adzLIx
aK2gAy3 INB | OGdzartfe FNRBY GKS O2yadNHzZOGAZ2Y Ay Rdz
or a newish trend, which is actually how people used to buildghi200 years ago and 2,000 years

ago, called architeest SR RS&A3dy o0dzAf RO ¢CKIFGQa oKSNB (KS | ND
the duration of a project. Instead of the smart guys coming in, making a plan and then getting the

heck out of the poject, they stick around until the end of the project, but the decisioaking

dwindles because as you get deeper and deeper in a project more of the project gets constructed

FYR &2 (GKSNBQa tSaa ySSR T2 N RSaidcalgd aichitéeRdlza K 2 dzii
design build. This was actually regarded immoral three decades ago because of the influence of
dzyA2yAal GA2y YR aLISOAFfAaAFGA2Y 2F fF02dz2NJ Ay (KS
of a craftsman way to approach agject where the leader and the planner stays engaged

throughout the entire project. So the top thing in the software world is what people refer to as big

design upfront, thenextLJA O dzNB NBLINBaSyda gKI G LQY OFftAy3a Ay

ingeniously simple tools

B : Bt DESIaN
DESIGN . CONSTRUCTION P FRenT

TRADITIONAL DESIGN-BID-BUILD

L oo

}oesm(r}) ' () = J‘) |

CONSTRUCTION DESIaN

ARCHITECT-LED DESIGN-BUILD ¢)

The second prdice of XP is called Rapid Iteration. This goes back to the notion that working

software is the primary measure of progre€3 you know what the worst kind of software in the

worldis?li Qa GKFd a2F06F NS GKFEG Aa dlen adodsYHigki®ddoS = 6 dzi
a0dzZFF Ay LINRP2SOGa Ay Y& hNIOES ¢g2N] Fft GKS GAYS
but no uses havebeen able tcevensee a prototypeyet because the application is 90% finished and

the vendor has beengid 90% of its price tag, but nobody can run the application until the final bits

are put together. What typically happens in these types of engagement is when the final does get

put together, then 20 people get to sit in a training course and they faefio G KS F LILX A OF GA 2y
scale to 20 people in a training room. Well of course the project is late and over budget by now so

GKSe R2y Qi KI@S GAYS (G2 FAE GKS LISNF2NXYIyOS LINEG
when the project was supposéd be designed to support 20,000 users instead of just 20. Well the

Agile answer to that is these loops inside the architect design build scenario, the method of doing
RSaA3ady 6KAES 22dz2QNB o0dzAf RAYy3Iod ¢t KSaScyles21Lla 0S02)Y
needs to resolve in runnable software that people can actually get their hands on and experience

how the stuff works and when you do that, you find that the design tends to refine itself rather

quickly.

ingeniously simple tools

What 10 devg tegaa! R plete

'ocsua : :

ARCHITECT-LED DESIGN-BUILD ()

I've blogged a couple of cases, if yautg carymillsap.blogspot.corand search for the term

YYSaasSR dzlJ FLILJAQ &2ddff asSS || O2dzL)X S 2F | LI A O {
way. They are painfully obviously not used by thegbedhat designed them, otherwise you know

the design would have never made it into production.

The third practice is called Tesirst Progamming and as Kent Beck introduces it:

GThe continuous testing reduces the time to fix errors by reducing thattiades to
discover thent.

That's exactly the experience that I've had. How many of you have ever been lggeadly, to go

andtouch somebody's code. It might be yours that you wrote three years ago; it might be

somebody else's code that left ttempany. | heard a story about a customer of ours who was

afraid to go and touch somebody's code because the person that had wrote it had left three years

ago. That's a big problem and it basically speaks to a lack of confidence in somebody'®ability t

understand what the code does, and also their lack of confidence that if they change the code they

won't break something unintended. This is how Teisst Programming works: step one is you add a

case to your case tracking system (we use a thing catdg8ugz which is written by Joel Spolsky's

company Fog Creek); that case then becomes a test, it's literally a piece of code that says I'm going

to run the application and for this input it had better create that output. Well of course when a new

test isintegrated into the test suite, all the previous tests succeed, but the new test will fail and you

want that because if the new test doesn't fail then the test doesn't really describe a new feature, it

describes an old feature. Then you write code tooatmodate passing that test and you run all the

tests so that the tests will succeed. Basically there's a loop between potentially step five and step

two that you may have to refine your test, you may have to refine your code, but ultimately all your
testsg Aff y2g adzOOSSR® g dKAAa LRAYGTZ AGUa al¥S b:
advice which say@write the thing to be maintainable and then go back later and if the code is slow

2NJ AT GKS O2RS Aa FI Ol 2 NEeR linedolcdide i 17¢places\ilBoughautdzQ @S =
your application, now you can refactor safely and securely knowing that as long as your test passed

82dz KI @Sy Qlii oNRB{1SYy (KS &dzyOQlAaz2ylf aLlsSoda 2F &2d

ingeniously simple tools

http://carymillsap.blogspot.com/

How TESt-FiI'St Programming works:

1. Add acase

2. Add a test

3. Run all tests (vvwvwvx ..new test fails)
4. Write code

5. Run all tests (vvvwvv .alltests succeed)
6. Refactor

The fourth practice is called Pair Programming tinislis one of the things when people talk about
-t AdQa LINRPolofeée 2yS 2F (KS FANRG (GKAy3Ia LIS2LX S

¢Silence is the sound of risk pilingtug

Pair Programming to me is a solution to problems tiilese:

Stuck?
Not in the mood?

Skipping steps?

hOOlFaaz2yltfte LQft O2YS Ayid2 ¢2N] YR LQ

OFLIoftS 2F R2AYy3I Al odzi LQY 2dzad y24 Ay GKS Y22
energy to spend four hours fixing thiSN2 6 € SY FyR L GKAYy]l AdQa 3I2Ay3 0
52Y8 Ayi2 (K& 2FFAOS FyR L NBIft& R2yQd F8S8t fA]
like doing step two which was create the test. Pair programming helps to solvephusems for

GKS &lrYS NBlFazy GKFG | ¢g2NJ] 2dzi 060dzRRe KSf Ll &2dz vy
somebody there watching and you know that somebody is watglyimg tend to be more careful

and you tend to have more energy. This is a floanmf my office and this is how we pair:

ingeniously simple tools

Programmer Wingman Wingman
(option 1) (option 2)

Wingman
(option 3)

L aAd Ay GKS LINE INIRY WESNEXa | CRKEIFGA NG AHfVER o2 LY gAYy 3IYL
see the screen circled in red. Ron Crisco is currently sitting in the blue chair wingmanning this

webcast.{ 2YSGAYSa L KI @S &d2YS02Re aAl 20SNI 2y (GKS Oz
make sure the pixels are big enough for everybody to see from far away. But we do this fairly
O2yyYz2yfe YR LQR ate GKFG 6S LyoddlitaNaRless.o0f & 2y &

t FANRY3I A& 6KIG ¢S R2-cditigating thg kBowkkdig\tBat igigihgiintoauB QNB O N
O2RS a2 GKIFIG az2vySo2Reé StasS OFy YFAydFAy AdG €F GSN
GNRAGAY 3T GKS fO2IRS IR aa/HINIBEASYIT a1 A hithsyaiid, & (0 S LJa ® L
grew up an only child,never did homework with friends, never had study groups in the lower

grades at school so | just always considered work to be a solo activity. But once | started pair

programming | realised that two people in a pair get far more work done together thiaayifwork

separately. The 10% that we spend paired up is some of the most fulfilling programming time that

LQ@S S@PSNI alIlSyld Ay Y& tAFSE A4 KFra 06SSy g2NI R OK

The fifth practice is called the Téhinute Build and Kent Beck talks about why teimutes is about

the right duration for all your automated test suites and your build scripts, Ant or Maven or

whatever, should run. He says that practices that you execute every day should reduce your stress

levels, not increase them and automated bbkecomes a stress reliever at crunch time. | did this

2dzai &SaidSNRIFIezZ L KIFIR I adAo0le aArdda A2y 6KSNB L
G2 ¢2N)] YR A0Qa 2dzad Y& KFIoAd y2¢63 wheth&rB (2 Y& ¢
pasesl t £ (KS (Sadao LF AG R2Sa LIl aa ff GKS G(GSadla
O2NNBOGfes GKSYy YIeoS LQff FTRR Fy2GKSNJ O2dzL) S 21
your test coverage becomes more and more cagtglwhen your test runs and passes, it just gives

you that much more confidence.

wn
x

This is what it looks like when the world is good:

ingeniously simple tools

LEANS] MUMWILL: FAIS

[echa]

[(echo] mrtinm

[exec) # . /0/4154 rest

[exec] # /0/4060 test

[exec] # /t/4163 test

[exec] # /74175 test

[exec] # . /0/4176. test

[exec] # . /t/core®] test

[exec] # /t/optl. test
’

[exec) /t/podl . test

[exec]) ./t/test .t ok

[exec] ALl tests successful

[exec] Files«l, Tests«14, 29 wollclock secs (.02 usr .00 sys « 26,73 cusr 1.22 csys = 29.97 C)
[exec] Result: PASS

fecho)

[echo] mrtinfix

[exec] # ./t/opt@l. test

[exec) ./t/test.t ok

[exec] ALl tests successful

[exec] Files«l, Testse7, & mollclock secs (.02 usr 000 sys « 4.52 cusr 0.56 csys « 5.10 OW)
[exec] Result: PASS

[echo)

[echo] mrcollm

[exec] # /e/4119. test -
[exec) # /074137 test

[exec) # . /t/74138 test

[exec] # /74139 test

[exec] 7 /t/podl] . test

(exec] ./t/test.t ok

[exec) ALl tests successful
[exec)] Files«l, Tests=11, S mollclock secs (.02 uar .00 sys « 4 .28 cusr .54 csys = 4. .84 CPV)
[exec] Result: PASS

BUILD SUCCESSFA
Totol time: 3 minutes 20 seconds

CKA& A& | fAGGHES G22taSG dkKFd 6S asStft OFff aw ¢32
at the bottom that BUILD SUCCESS#edk three minutes and 20 seconds to execute and that runs

all the tests for our tools. For example, 4119 test might have 15 or 20 command line executions in it

but it tests a particular feature of the tool called mrcallrm drichow that when all these tests pass

we have a tool that is ready for release.

ingeniously simple tools

Big Spec == Big Mistake
testing-is-too-expensive
antigravity
gluttony

Iknow-it's-what-l-asked-for-but-it's-not-what-l-want

The first mistake that | want to talk about that | used to make a lot is the big spec mistake. A lot of
people believe that the way to do a software project is to wrigr@at big spec that includes

everything that you might need to put in the product, then that becomes the plan and you lock it
down. In some cases the project planners actually leave the project and move onto another project
and start planning project beaving the spec for the builders to make. In my experience that has
always been a really big mistake for me. The testxigo-expensive problem is really about what

do you do when you have a 100 page specification and you want to test to see if ftowarso

YSSita GKIG aLISOAFAOIGAZ2Y ® 2Stf AF GKIFIG aLISO Aa
read the spec, run the code, look at all the details that the spec describes and make sure that the
code performs in a way that matches how teakings are described in English in detail. It sounds
good in theory, but that might take four or five weeks. It might require a tester to create lots of
innovative ways to reproduce the cases that are described in English. So if your test suiteuakes

or five weeks for a human to execute and somebody needs to make a small change in the code, the
tester really needs to start over with page one of the document again and not very many people can
do that very many times without starting to skips stef®sting to an English specification

document is really expensive, because it involves labour, it involves somebody that is willing to pay
close attention over and over doing the same repetitive task and a task like that | think is really
better executedby a machinegatherthan a human.

The antigravity problem is the problem that | can actually specify that | want to levitate four tonnes

of object 19 inches above the ground for a year and a half, and | can write that sentence in English

jdzA 0S Sl aatesz odzi A hetEent@nBeNkrealRyr FHE fad dzhatl thdie2eally Y LJ S Y S
are no physical laws or physical constraints on what you can write in English, that is why science

fiction exists, but when it comes time for somebody to build it they get stuck in the same way that

my framer got stuck, you can't build an Escher print out of wood, you can build one on paper but

you can't build one out of wood. So it's very easy in an English specification, a big spec upfront to

actually specify things that are contradictory to whapdssible.

The gluttony problem is probably pretty easy to understand. The guy with the word processer and a
big imagination can put a bunch of stuff into an application that really doesn't belong there.

Then finally the-know+it's-what-I-askedfor-but-it's-not-what-I-want problem. It sounds
undisciplined to say what you want, get it, and then later decide well, that's really not what | want.

ingeniously simple tools

CKSNBE INB Fff a2NIla 2F 3ISyYyRSNI 221Sa Foz2dzi GKIFG 1
people areunable to describe what they want until after they feel something that is close to what
they want, then it's much easier to refine than it is to imagine the perfect application from a blank
sheet of paper. Kent Beck in the XP book advises that you simaimdain only the code in the tests

as permanent artifacts. That you should generate other documents from the code and tests. That's
really what we do, when we generate our manual pages we generate those based on what the test
suite does, instead of thother way around. If you think about this it's really one of the most
elemental principles behind relational design in that you want to store data only once. You want to
store a given piece of information once and only once. You want the spec inamee @nd you

want the code in one place. Otherwise you end up with the potential for update anomaly problems.
The spec in my opinion, belongs in the test suite so that a machine can execute it over and over and
the code belongs, of course, nobody delmtehether the code belongs where the code goes.

Regression Testing == Awesome

less expensive

refactoring easier
confidence
support documentation

The next thing that blew me away is how awesome regression testing is. | used to think that only

huge companies could do regression testing and | found out to the contrary that even our small

company camafford to do it. In fact, | would argue now that we really can't afford not to. It makes

refactoring so much easier. If you want to go and change the way you factor some subroutines, as

long as you keep passing tests and as long as your tests areaa€aqtheir coverage of your

LINE RdzOG =z &2dz2QNB al ¥FSo L, 2dzUNB g2NJ Ay3 GA0K | Kdzs

ingeniously simple tools

Incremental Design == Better Design

decisions easier obvious
less expensive just better
inspired innovation

The incremental design to me means absolutely better design. It allows us to make decisions more
easily and makes thosedisions more obvious, it is less expensive and just better. Basically doing
incremental design allows us to create much more inspired designs than if you have to sit down and
imagine everything from front to back on a blank sheet of paper. In my experimost code that

people are not satisfied with, is not because the code mismatches the specification, it's because the
specification mismatches the need.

Need

~Spec
"~ Code

~
’

Below is the picture that appears inside my brain whenever | talk to somebody about incrémenta
design and rapid iteration:

Here’s what | thought | wanted

o 1 alaata
N | designed big up

ront...

features

time

ingeniously simple tools

Here's a picture of a product that | thought | wanted when | designed it big upfront. | thought that |
wanted the product to have a red feature, a purple feature, a gold feature and a brown feature and |
knew it was goingo take time to build this thing. So the distance from when | imagined this product
and when | knew the product could be built is quite a long span of time. Ron Crisco has taught me a
lot about how to write software projects for release and the way tRanh would do a project like

this is start with something valuable that runs and then release that. So we decided in this particular
product to do the red feature, because the red feature would be helpful and if our software tool only
did the red featureand we were to perish after creating just the red feature, the red feature would

in fact be useful and useable to a lot of people. So we built the red feature.

B

ild something valuable that runs,
ind release it.

features

. =

time

The next step, we built a little more and we released, so we built the purple featurehancbver
time we built the gold feature.

Build a little more and release,
y little more and release...

features

time

At that point, something magical happened. We discovered that we really didn't want the purple
feature after all, after using it for some time and getting accustomed to what it could do, what we
decided wasnstead of the purple feature, what we really wanted was the pink feature.

ingeniously simple tools

...and discover.

features

time

So instead of building the brown feature on top of the gold feature at this point, we decided to
replace the purple feature with the pink feature, because we discovered thats$ wé really

needed and we couldn't have known that, or at least we didn't know that at the beginning when we
planned this project.

The next couple of iterations were now that we have this pink feature, we really don't like the gold
feature as much as w&ould like a blue feature and in the final release we built a green feature on
top of the blue feature.

1at | want is
not what | imagined.

features

time

The experience of using the product over time informed us that the design we initially imagined
gayQi NBIFffe 2 ldiymofdaridwmveended G wantird s yiod\eryt much at

all like what | had initially imagined. Maybe there are people out there that are so awesome at
RSaA3ayAy3a GKAYy3I& FNRBY aONriGOK GKIG GKS& OFy RSaA
just not thatguy. | am pretty good at taking something that works and making it better, but I'm not

nearly as good at taking nothing and turning it into something elegant.

ingeniously simple tools

So what we've got here is three things | want to focus your attention on. Firstly, we blereause
the red feature much earlier in the top project picture than we would have been able to use
anything in the bottom project picture.

AWESOME

features

NOT AWESOME

features

time

v Usable software earlier
v Experience informs the design

v Better design in the end

{2 G + 3IAGSY LRAY(G Ay GAYS Ay GKS o62G02Y LA OG dzN
gotthe SR | yR G(GKS LJzNLJX S TSI GdzNBxX a2 6SQONB 4 fSIadi
project at this point.

I've already talked about how experience informs the design so the design actually changes for all
the right reasons because as we use thftveare we decide what we really wish the software did.
Instead of what | thought | wanted it to do, | wish it would do something slightly different. Then in
the end you've got a better design because the upper software is informed by actual use and
expetience, whereas the lower software was informed only by someone's imagination. So it's better
all round. You get use out of it earlier and you end up with a better design by the time you're
finished.

ingeniously simple tools

What Has Not Worked

Probably the most damaging aspet a project that is attempting to be an Agile project is the
absence of a customer that has these five attributes, acronym: C.R.A.C.K.

=

(&

No CRACK Customer

Collaborative + Representative + Authorized + Committed + Knowledgable
No t Yes

Suicide!

If a customer representative isn't on the product team that is collaborative and willing to talk about
things, repesentative meaning that this person has the best interests of the users that this
application is going to be distributed to. Authorised meaning that the company has given this
person power to decide what goes into the software and what doesn't go intsdftevare.

Committed, meaning that he cares and knowledgeable meaning that the person understands what
the real needs are of the people are that he is representing. If nobody in the project will say no, so
everything gets a yes. I've been on projectfobe where there is no real CRACK customer and it's
suicidal. Basically, the team doesn't know what to do so it makes it up as it goes along. Most
members of a team, if they're responsible human beings, will try to add more and more things
hoping that ths imaginary customer will be happy with having more and more things in the
application and it's what causes applications to end up having 80% of its code path never being
executed by anybody. It's what causes projects to go over time and over budgeab3dénce of a
customer with these attributes is absolutely an Agile project killer.

The second one, ironically, hot enough customers is bad, too many customers is just as bad as having
no customer. You've got to remember a great design is just as nigeht aaying no as it is about
saying yes.

ingeniously simple tools

=

8

Too Many Customers

bad as 1
Suicide!

great design out No

If that's vexing to you, think about the iPod, think about a device that does not have-affi on

aoAlOKO® W2y L GKFy L@S FyR {(iS®S w204a RSOARSR (Kl
have the mosktlemental switch that every other device on the planet had, but they designed it

simpler and more elegantly because they knew what features to say no to and they knew that an on

off switch was superfluous, the product ought to be able to know when yod itean and when

you need it off by itself.

ingeniously simple tools

=

8

Cultural Mismatch

agile bout decentralization of
hypocrisy
openness, honesty t failures

The next one is cultural mismatch. Agile is all about decentralisation of responsibility and
accountability into the hands of the people who were technical enough and knowledgeable enough
to be able to dahe job correctly. If you try to do an Agile project in a centralised organisation
unfortunately all you end up with is hypocrisy. What you end up with is a centralised organisation
that can't let go, trying to claim that it is letting go, but it's nétgile requires openness and honesty
about where the failures are. If you're in one of the types of projects that the management cannot
stand to admit that anything is imperfect then Agile is not for you. Basically the whole key about
Agile is that you ant to try to find out where the failures are as early as possible so that you can
redesign and surmount them.

ingeniously simple tools

=

[

Talent Mismatch

actively design, optimize

t factorization ! running, valuable software

The finalpoint is about talent mismatch. Basically if you have a team that is not disciplined or not
seltdisciplined and youtrytoinS3aNJ G S ! At S GgKI G @2dxQft SyR dzLJ ¢ A
GAOK A& GKS 221S Fo62dzi a¢KSe@ Ydzad 0S R2Ay3 ! At S
participants have to be good at design, they have to be good at optimisation, sometinmesvée

have to be good at process optimisation. Sometimes they have to be able to look at what they're

doing and decide that in order to do this we need to do it a different way. A key skill in any Agile

project is the ability to factor a project so thiaproduces running, valuable software every few

weeks. Now the value of yoarmight be two, it might be one, it might be 36, but basically if you

decide what your iteration length is between product releases, the ability to continually chunk out

piece2 ¥ az2F0oI NB GKIG 62N}z GKFG OFy oS AyadltfSR

ingeniously simple tools

Q+A Session

Q. On the legacy product waterfall methodology is used, and we're going to move
to Agile/Scrum, what are some of the things we should be careful of or look out
for?

A. | think the cultural mismatch issue and the talent mismatch issue. There's a really

good blog post that | saw two days ago, | Tweeted it, it was called ‘Briefly about
Agile’ (seldo.com) and the blog said “When | hear Agile | hear cargo cult”, and it's a
very short blog post that says that basically a lot of people who implement Agile are
really only implementing the things that are their favourite sounding parts. They
might implement the idea that they don’t need to write big, complicated
documentation. The problem that not writing big, complicated documentation solves
is that you don’t have to have a big complicated team that had got big complicated
integrations with your development team who are updating big complicated
documentation. So that’s one problem solved. But if you don’t have anything to
replace that big complicated documentation, for example, you don’t have a
comprehensive high coverage test suite, then you’ve got a huge gap in your project.
So what | see happening in a lot of sites that call themselves Agile is they’re not
really following the disciplined practices of having an integrated test suite that runs
within ten minutes of clicking the build button. What's happening is they're taking
what they like but they're not taking the part of the process that requires hard work
and actually fills in for the part of the waterfall process that they’re taking out. So
what I'd advise you to do, the biggest pitfall is that if the team are not capable of
doing design or not empowered to do design by their organisation as they work, then
Agile is not necessarily going to end well, if the culture of the company that is doing
the project doesn't allow for failure. Agile is about failing fast so that you can fix it
quickly. It's not that your goal is to fail, your goal is that if a design element is
destined to fail that you fail quickly so that you can fix it early so that your product can
have a better design suitor. If a company’s leadership is culturally opposed to
anything having to do with failure or admission of failure then Agile is really going to
be difficult to pull off.

Q. What are the limitations and advantages of Agile application design compared
with ITIL or waterfall in software application design for development and
deployments?

A. One of the limitations of Agile is that you really have to have a different staffing mix
than you can in a more upfront, planned type of project. There’s a really good book
called Balancing Agility and Discipline written by Barry Boehm and co-authored by
Richard Turner and they talk in great detail about what your project staffing mix
needs to be in order to pull Agile off properly. You basically need to have much more
senior, much more mature, but much more out of the box thinking project participants
on an Agile project than if you have a more traditional waterfall type of project.
Remember, what waterfall is intended to do is take large groups of people who are
not necessarily that inventive or highly trained, in other words people that don’t cost

ingeniously simple tools

as much, and allow them to get something nice done. So the advantage of waterfall
is that it's an attempt to separate thinking from doing, so you put the highly paid, very
expensive thinkers at the front of the project and then you try to release them as
early in the project as you can to save on cost, then you pass off the work to people
that don’t cost nearly as much. If you think about the construction industry, that’s
how you tend to think highways get done. You've got somebody in an office who is
drawing up pictures and thinking about queuing theory and where to place the traffic
lights, you don’t want your builders out there just throwing up stuff and seeing if it
works, you need an architect. Then as the build progresses, if it's a project that’s
been done six thousand times in the past 15 years, you can be reasonably certain
that the plan is going to work because it's been thoroughly debugged. Agile has an
advantage in applications that are executed using a plan that has not been
debugged, projects that have never been done before, but it requires a certain type
of staffing skills mix that you may not be able to afford. So the downside of waterfall
is that it tends to diminish the individual creativity that the better people on the team
may have. The upside of waterfall is that you're supposed to be able to use lots of
expensive and experienced people and get a reasonably good job done. So part of
how you should decide which process to use depends on what are you trying to
accomplish. If you're trying to accomplish something fairly mundane that has been a
lot of times before waterfall probably is a better way to do it. If you're trying to
accomplish something that’'s never been done before then you probably need to have
lots more rapid iteration, lots more incremental design, lots more integrated testing
and the things that Agile really brings.

Q. My team have been having trouble in limiting our Scrum meetings to 15
minutes, often we take 25 minutes to an hour and 15 minutes. Do you have any
tips to reduce it and keep the discipline?

A. I’m not a Scrum expert by any stretch of the imagination. | used to host a morning
stand up meeting at a prior company that | was at and to be honest the main reason |
did that is because the culture of the company required that there be a meeting so
that somebody could take notes so that the management of the company could know
what was going on in the development team at all times. But honestly it didn’t help
the development process very much for us and I've taken the advice of a gentleman
named Jason Fried at 37signals and his book called Rework. One of the chapters in
Rework is called ‘Meetings are Toxic’. At Method R Corporation we don’t have
meetings anymore, | can’t think of the last time | had a meeting that took longer than
a few minutes. Now we do pair up and sometimes we have three people in a room
talking about something very specific and | don’t know if this is particularly helpful
advice, but | have found that by eliminating almost all the meetings | used to have |
haven't lost anything. When | need to know something technical or | need to share a
design idea to make sure that it’s valid there are one or two people | pull into the
room with me, we discuss it and we move forward. Having said that, the software
that we design here doesn’t typically have a lot of integration points, so there’s not six
different interface groups that need to be aware of everything that’s going on every
time we make a decision.

ingeniously simple tools

My advice is to grab a copy of Jason Fried and David Heinemeier Hanssone’s book
called Rework and see if that might give you some good ideas.

Design upfront versus incremental design—i sn’t there a huge possi|
needing to change the fundamentals of the design half way through when you
start adding new requirements?

That’s one of the places where the talents of your team is a huge determinant in
whether you will succeed or fail. The whole thing | said at the end about factoring —
factorisation. Ron Crisco is my product development director and his presentation
next week at ODTUG is about how do you do data modelling in an environment
where change is inevitable and it's unpredictable. Because one of the things that
people talk about being a huge deficiency of Agile is when they misunderstand and
think that incremental design means no design and then people think that Agile
means you don’t do data modelling. You absolutely have to do data modelling if
you’re going to use a database in your project because there are so many things that
mess up if you don’t have a sound data model. You can’t have a high performance,
highly scalable application if you don’t have a sound data model. There is the
possibility that you get a third of the way into the project and discover that your data
model is just not good enough and | don’t have a set of examples on the tip of my
tongue that | can tell you about, but Ron has been putting together a sequence of
presentations on this. Fundamentally the goal is to make sure that the things that
you do design and you do lay down into concrete, so to speak, are well done and that
they’re extensible. An Agile project in which the data model ends up having 27
copies of the same data because basically the model was just accreted by different
people and never really rationalised or centrally controlled or made elegant, that is
not what you want. It is not a good data model if that’'s what you end up with. The
bottom line is if the model needs to change a third of the way or half way through the
project then it needs to change a third of the way or half way through the project.
The level of talent of people that are designing the data model and their experience
with doing rapid iteration is going to minimise the impact of needing to do that on the
occasion when you do need to do it.

What has been your experience with on site and off shore development
centres? Does Agile work with that?

Again, it depends very much on the talent mix that’s involved in the project. We're
actually involved as a vendor except we do some consulting on the side, it’s a little
more than just on the side, we have one very large project that’s actually in its third
year of execution and we've been writing PLSQL code for a large company and we’re
basically an off shore development team for them, although they’re also in the US
and we are too. We live a two and a half hour flight away from them, so we
exchange specifications through e-mail and we participate in quite a few phone calls
with them that constitute meetings where we’re having technical conversations about
how the spec needs to be designed. The same company has off shore teams in

ingeniously simple tools

India that they have a completely different relationship with. | guess we are a much
more experienced team and it doesn’t have anything to do with whether we’re in the
US or India, but our team has experience and the team in India is much lower priced
and consists of much less experienced developers. Those guys require a spec to be
sent to them and they code to the letter of the specification. If something doesn’t
make sense in the spec they will ask a question to try to resolve the ambiguity but
there’s not a whole lot of attention paid to trying to improve the spec in that other
relationship. The relationship our customer has with us is that we're expected to be a
partner in creating the specification for the software that we're writing. We're
expected to interface with the other teams and think ahead so that we’re actually
designing along with our client as we write our code. We've just returned from a site
visit last week in which we talked about the Agile processes that we use, the
automated test suite, we don’t like documentation for documentation’s sake, but
there are some cases in which you absolutely have to have documentation to be able
to lock down what the specification is between two teams that live in totally different
time zones. For us we don’t have the same amount of documentation as the
company does with their Indian off shore team, but again, it's because of the role that
we play. So | think that Agile works in so called off shore environments but it really
comes back to what is the talent that’s involved and that helps define what level of
detail is required in the documentation that has to be transmitted back and forth
between the teams.

What is the relationship between XP and Agile?

The XP book was written 1999 and does not have the word Agile in it that | could
find. | actually searched in Google Books and | could not find the word Agile. As far
as | know it does not appear in Kent Beck’s book. | subsequently found out that the
word Agile was chosen by a group of 12 authors. Basically a group of likeminded
people, Kent Beck included and a bunch of other people from Pragmatic
Programming, from Scrum and from several other disciplines that had similar
attitudes that Kent Beck had. They got together in Colorado and had a meeting for
two or three days and tried to sit down and decide what they agreed upon. The
principles they agreed upon they wrote down in a thing called the Agile Manifesto
and the 12 authors put their names to this manifesto as the core values that they all
thought represented what they did. The word Agile is really kind of a rollup word,
therefore. | think as Agile as the parent node in a tree that beneath it contains XP
and Scrum and Pragmatic Programming and several other methods that were
created before the word Agile existed. But they all have the same sort of spirit of
we’ve got to figure out a way to add discipline to responding to change. So the word
Agile is the parent of a tree that has leaves that include things like XP and Scrum.

ingeniously simple tools

Q. How do we reconcile Agile practices against SOX and HIPAA and other legal
mandates that tend to lead towards centralised committees and information
governance?

A. That’s a really good question and | don’t know. | do believe that it's a similar issue to
what an aerospace company would have to deal with. A place | would look for
maybe some inspiration is the story of Kelly Johnson and the Skunk Works group at
Lockheed, basically we’re talking about an industry that is heavily regulated, it's a
military industry. Kelly Johnson was an aerospace engineer that is responsible for
the design of the Lockheed P-38 Lightning fighter that the allies used in World War 11,
the F-104, the U-2 spy plane, the SR-71, those all came out of Kelly Johnson’s
Skunk Works operation in Southern California near Long Beach. | know that that's a
heavily regulated and heavily authoritarian type of an industry and if you read Kelly
Johnson’s rules for how they did some of the remarkable things they did, they’re very
similar to what the Agile guys talk about in their Agile Manifesto and the principles
behind the Agile Manifesto. The way that | would try to think about it is to think in
terms of how a group works inside versus its interface with the outside world. The
story | told about us and our customer is similar to this, we are actually Agile inside
our company doing a project as a subgroup of a company that is not particularly
Agile, that we’re feeding software back to. Now our project has been so successful
that they’re interested in learning more about Agile, but they themselves are not Agile
but we are as a component. It's very similar to how you implement a module and
how you publish when its interfaces are different. So perhaps your team can be
Agile and operate within its boundaries as an Agile team, but if a document is
required because of HIPAA, for example, or Sarbanes Oxley, you have to create that
document as an output of your team and you might create that document in an Agile
way. For example, you might try to find tools to automate as much of the document
creation as possible, but if that’s a requirement of your project because of the
governance that surrounds your project, then obviously it’s just as important as an
output for getting paid as the code that you produce. It just comes down to
understanding what your API with the outside world is as a project team and where
you have liberty to choose how your project team can operate within its own
membrane.

Q. The older spiral methodology as well as rapid prototyping methodologies seem
similar to Agile, do you see major differences with Agile and these
methodologies?

A. If you think about what incremental design and a rapid release cycle means it's very
much like the old spiral or rapid prototyping methods. | think perhaps Agile is
different in that it incorporates a broad variety of other practices as well: the pair
programming and the ten-minute build. Those are almost like ornaments on the
fundamental tree of the rapid prototyping idea. Basically rapid prototyping is about
“Hey, | don’t know if this thing is going to fly to the moon, | don’t even know if it's
going to fly off the backyard, so let’s create a model first, see if that will fly. Then we’ll
see if we can scale it up, then we can see if we can put a guy in it, then we can see if
we can put it into orbit, then we can see if we can get it out of orbit, then we can see

ingeniously simple tools

if we can get it to the moon, then we can see if we can land it on the moon.” If you
think back to a project as large as Apollo for example, that’s basically how they did it.
It may sound like a big design upfront but they did lots and lots of missions that
taught them what they needed to know before they could ever design the next
mission. We had to put people into orbit before we could kick people out of orbit.
We had to orbit the moon before we could ever decide to land on the moon.

So | think in the days when that happened what they were doing was called rapid
prototyping and in the software development world | think that’s really what Agile is,
is rapid prototyping. But added with it a lot of things that tools can enable us to do to
basically...| don’'t know, it seems like Agile is a bigger kit to me that explains how to
do some of the loose end details that you have to do day in and day out on a project
in order to succeed.

Q. Do you in any way capture anything in a modelling tool afterwards? So for
example, capturing tables and putting it in an entity model, or capturing
business rules in codes to make it readable afterwards?

A. On the project that we’re doing that | keep referring to one of the things that we'’re
required to do is to produce an entity relationship diagram for the project team that
we’re working with so that they can understand the structure of the tables that are in
the schema that we created. Of course that changes from time to time and we have
to keep the remainder of the project team updated with what those changes are.
What we try very diligently to do is to make sure we record that information in the
database where it counts, and then we generate the documents based on that. So
it's like our source code is the actual create table statements and the actual alter
table statements and create index statements — that’s our source code. The
documents are created automatically by using tools to generate what the schema
looks like, so any pictures that we draw are not drawn by hand, they’re derived from
the source code, so to speak, of the create table statements that we’ve generated.
The remaining documentation, we write a lot of code with PLSQL and | believe we’re
actually pulling comments out of the PLSQL to create the user documentation. We
have, for example, an Open Source tool called ILO at SourceForge, it stands for the
Implementation Library for Oracle and that's how the documentation for that is built.
It's basically extracted from comments within the code so our documentation and our
source code are really one and the same. In our MR Tools product they’re written in
Perl and the documentation for the tools themselves are written inside the Perl
source code. So it's one file edit, from writing the documentation about a paragraph,
the code that is right next to the documentation that describes it. So back to that
fundamental rule of relational design, you want to store data once and only once, well
if you have different formats in which you need to publish given data, what you need
to do is figure out what your source code is for that format and then try to find tools.
That’s one of the reasons Red Gate and Method R are friends because Red Gate is
one of the key providers of tools that allow you to do things like schema reporting and
schema differentiation and data differentiation. You don’t want to have to do that
stuff by hand, you want to be able to have tools that help you do it.

ingeniously simple tools

Q. What is the biggest challenge when implementing Agile methods? Can you
elaborate more on the Agile method and database modeling in database
architecture?

A. To the first question, the biggest challenge is to make sure that you don’t view an
Agile system as a bunch of buzzwords and a bunch of ceremonial things, that if you
do those everything is going to be all right. Agile is a bunch of work. If you decide
you're not going to write a big complicated specification in English, well then you
need to write a big complicated specification in code, you've got to fill the gap one
way or the other. I'm a huge proponent that a specification should be written to be
machine executable as opposed to human executable, but that takes work. | think
one of the reasons that Agile methods have such a bad name among my DBA
friends is because the way that they see them implemented is that people just pick
off the stuff that’s easy and they don’t do the compensatory things that are difficult
and so they end up in a rut, they end up with no spec whatsoever. They don’t have
tests, they don’t have an English document, they saying they’re doing Agile and all
that does is make Agile look bad.

In answer to the second question, one of my good friends that used to work with me
at Oracle is named Dominic Delmolino, he’s on Twitter and he talks a lot about
database and Agile. If you just follow his Twitter stream you’re going to get loads of
pointers to different sources of information. Ron Crisco is an expert in the same area
and he’s speaking next week at ODTUG about data modeling and rapid iteration
projects. There’s a good book called Database Refactoring. There are places out
there in the market to help learn more about how to do rapid iteration and
incremental design using databases. | think one of the reasons it’s so hard to
redesign a database model is that the tools market is relatively immature. Red Gate
is early to the table really in providing some of the tools that it creates for the Oracle
database administrator and Oracle database developers. There’s not a whole lot of
good competition out there that helps people refactor databases and there are really
two big problems: one is the schema differentiation, a developer changed six tables
and needs to communicate to the DBA what they changed, so then the DBA can
rationalise and publish that schema change for everybody else in the project. Well
noticing what’s different about the schema is only half the battle, maybe even less
than half the battle. The rest of the battle is “Hey you added a column, what data did
you put in that column? So what data in this database is different based on what you
the developer did by adding a column to this thing.” Of course it’s probably not
driveable data from anything that was previously in the database or you wouldn’t
have needed to add the column. So it’s a big complicated job to refactor and if 20
years ago somebody had said, “Yeah, | want to take all instances of these five lines
of code out of my project and turn them into a function call,” the developer would
have been aghast. They would have said, “Oh my God, that’s going to take me three
weeks to do that,” whereas today in Eclipse you can do it in 20 minutes. The tools
are just much more mature on the developer’s desktop than they tend to be on the
database administrator’s desktop for doing refactoring. It's one of the reasons that
I've been following Red Gate because they seem to be the leaders, even ahead of

ingeniously simple tools

Oracle and some of the more established players in the market, in understanding that
these things are gaps that need to be filled with good tools.

Q. Do you have suggestions with respect to programming standards at the
beginning of a project? One project that Chris was involved with was so
focused on speed of development that management rejected his proposed
requirement that all SQL used by the php web server be expressed within a
packaged procedure. When the data model was later changed, we were not
merely rewriting SQL but negotiating all the interfaces between the web server
and the database server.

A. If | were to write a book about ten mistakes you need to watch out for, that's probably
number one or number two. There’s a concept called ‘technical debt’, that’s basically
a story about unpaid technical debt. Think about what debt is with money, debt with
money is spending money that you don’t have but you'll earn it later and pay it back
later. That’s essentially what you do when you compromise code quality for speed.
Speed to market means “I've got to get this thing done in two weeks, | don’t have
time to make packaged procedures out of my SQL. So what | end up with now is I've
got SQL in my php, my product works, I've released it. Now we’re starting to make a
little bit of money because some customers like it, but they need six new features.

So instead of spending next week fixing my code so that it's easier to maintain later,
I’'m adding six new features to my code.” Ultimately your debt catches up with you,
there is no more that you can borrow, you hit your credit limit so to speak, and what
has to happen at that point is you have to stop and start paying it back one way or
the other. The story that Chris told in his question ended with the abrupt realisation
that something that should have taken 20 minutes to do, will now take four weeks
and that’s the interest on that debt. So as you continue to leave yourself in technical
debt and add more and more features to your product, you're basically compounding
the interest that you're going to have to pay back on that technical debt.

Basically what | find Agile gives me is because of the regression testing suite that |
have, it makes getting out of technical debt, putting the SQL into packaged
procedures and making an API, it needs to be done. I'm a fan of releasing a product
that works before having done all that, | think that’s a fine idea, | think the place that
the refactoring needs to take place is after the project has been demonstrated to be
viable. | think that the gap in the story that Chris told is his management’s
appreciation of what the cost is of continuing to hold that technical debt as the
product gets extended and extended. | think the right place to go fix that problem is
not to have delayed the product’s release in the first place by doing a complete
architecture design to put all the stuff in store procedures. | think that proving the
concept that the application works and is saleable was a good thing, but | think that
somewhere between version one and version two or three there needed to have
been a feature added that customers don’t necessarily, that doesn’t show up in the
marketing material, that is “Look guys we’ve got to go and refactor this code so that
it's easier to maintain later, because we don’t want to get caught out.” There’s a
number of reasons that you want your PLSQL interfaced instead of having SQL
sitting in php pages.

ingeniously simple tools

There are a lot of performance reasons, you don’t want to be passing long strings of
SQL between a client and server for example. There are security implications, there
are horrific performance implications of that implementation inside the database. As
Knuth said 31 years ago, you don’t optimise before you make sure that the thing
works and in the software industry ‘the things work’ is not just does the code run, but
is somebody willing to actually trade their hard earned cash for our code. | think the
place that the mistake was made was not necessarily in releasing before the
architectural work, but continuing to release without going back and revisiting the
architectural work.

Q. Are there any publicised white papers that show some detailed examples of
successful Agile development projects? Are there any public training sessions
coming up this year that are hosted by Method R?

A. Off the top of my head | don’t know, if | need to find them | would start with Google
personally. There is one blog called agilewarrior.wordpress.com. A Google search
is going to result in a rich answer to that question.

Cary Millsap

Cary Millsap is an Oracle ACE Director, president and founder of Method R Corporation,
former VP at Oracle Corporation, founding partner of the OakTable Network, Oracle
Development Tools User Group "Editor's Choice" 2010 award, and Oracle Magazine's 2004
Author of the Year.

ingeniously simple tools

http://method-r.com/
http://www.oaktable.net/

