
Best practices
for SQL Provision

GUIDE

2

Contents

Introduction 3

Network architecture 3

Workflows 5

Security 7

Using clone databases 8

Maintenance 9

3

Introduction

In order to get the best out of SQL Provision, it’s a good idea to
think about how it would best fit into your workflows and network
architecture. We’ve put together a set of guidelines which can help
you to optimize efficiency, performance, security, and reliability,
and recommend that you consider these when planning a proof-of-
concept or rollout of SQL Provision in your organization.

Network architecture
SQL Clone is designed to work within a LAN environment, using a single Windows server
running SQL Clone Server, one or more file shares on which to store images (point-in-time
database copies), and one or more machines running SQL Clone Agent, which allows you
to create images and clones using installed copies of SQL Server on the same machine.
You can either access SQL Clone Server from its web interface, or issue commands using
PowerShell from any machine on which you’ve installed the cmdlets.

SQL Clone uses disk-based virtualization technology to allow many lightweight clone
databases to be made from a single image. There are many benefits to this, particularly
in how quickly you can create new databases and how they can access large data sets
without having to consume additional disk space, but there are also some trade-offs
associated with this technology which can be mitigated by using an appropriate
network architecture.

Guide Best practices for SQL Provision

4

When SQL Server accesses a clone database, the virtual disk driver first checks to see if
the data it is requesting is available in the clone’s local file, where changes are stored, and
returns the data from there if so. Otherwise, the data is accessed from the image file. This
means that the bandwidth, latency, and reliability of the connection between the clone and
the image location is very important. Best performance and reliability can be obtained by
hosting the image file share on a SAN on the same LAN as the machines which will be
used to host clones.

Separating the image by a low bandwidth and/or high latency connection such as a VPN
risks low clone performance, as whenever SQL Server attempts to read unmodified data,
it must be transmitted across this connection. This will be exacerbated by usage patterns
which cause SQL Server to read or modify large numbers of pages, such as table scans or
updates affecting many rows.

Interruptions in the connection between the image and clone can prevent clones from
being accessed until SQL Server is restarted. If SQL Server attempts to read data from the
image, but the virtual disk driver cannot reach the image at that time, it returns an error to
SQL Server, which then refuses to work with the database. SQL Clone attempts to detect
this condition and detach the database, but it is not always possible to do so before SQL
Server attempts access.

It is therefore very important that the connection between images and clones is not
interrupted. This is best achieved by using a stable LAN connection between them.
Depending on your network architecture, it may make sense to create a number of clones
on central servers rather than distributing them across machines which are sometimes
disconnected from the network or are separated from the image location by a VPN.

Response Response

Request Request

Image Clone SQL Server

Response Slow response

Error response

Request Request

Image Clone SQL Server

 low bandwidth and/or high latency connection

Connection

Slow
queries

Request Request

Image Clone SQL Server

Interruptions in the connection Error

Response Response

Request Request

Image Clone SQL Server

Response Slow response

Error response

Request Request

Image Clone SQL Server

 low bandwidth and/or high latency connection

Connection

Slow
queries

Request Request

Image Clone SQL Server

Interruptions in the connection Error

Response Response

Request Request

Image Clone SQL Server

Response Slow response

Error response

Request Request

Image Clone SQL Server

 low bandwidth and/or high latency connection

Connection

Slow
queries

Request Request

Image Clone SQL Server

Interruptions in the connection Error

Guide Best practices for SQL Provision

5

Workflows
SQL Provision permits efficient, compliant database provisioning for
dev/test by using Data Masker and SQL Clone together.

Masking
Making a production database available for dev/test use usually requires masking
sensitive data, altering permissions, and sometimes modifying static or config data. Using
Data Masker, someone familiar with the sensitivity characteristics of the database can
generate a masking set appropriate for a particular database, creating a set of rules which
will replace personal or otherwise sensitive data with generated replacements. A masking
set which takes into consideration the distribution of the data in the live system and the
implicit relationships between columns and tables can be used to ensure the masked
database behave similarly to the real production database, while being compliant with
data protection regulations and best practices by not sharing sensitive data in dev/test
environments. Masking sets should be stored in a location accessible by SQL Clone users
who create images or where automated image-creation scripts will be run, and will need to
be updated if the database schema changes.

Although Data Masker can connect to a production database in order to read its schema,
testing the masking set is an important part of this process, and so it must be re-targeted
to a temporary database in order to safely do this. Performance will be higher if the
machine executing the masking set has a fast, low-latency connection to the SQL Server
hosting the database. You may want to consider creating an image of the database using
SQL Clone and testing the masking set against clone databases, as these can be quickly
reset back to the original image state to test further changes.

Creating images
Creating clones takes very little time and initial disk space, but creating images requires
more consideration as each image is a full point-in-time copy of the database. Images can
be created from a live database (provided the server is not part of a cluster), which may
be appropriate if you already maintain a pre-production environment which you are looking
to create additional copies of. However, imaging from live should generally not be used
directly against production, as this would require running the SQL Clone Agent service on
your production system, and may result in temporary I/O interruptions and performance
degradation during the imaging process. Instead, it is generally better to use backups when
working from production, setting up a temporary instance within your dev/test environment
to use for preparing images. As a SQL Server instance cannot work with database versions
newer than itself, this temporary instance should be the same version of SQL Server as
that used in your dev/test environment, or an older version.

Guide Best practices for SQL Provision

6

Any changes which you want to be present in all clones, such as masking data, should be
made during image creation. This means that they will only have to be run once, and the
image will not be made available for cloning until the modifications are complete.

In many cases, it is useful to automate image creation using the SQL Clone PowerShell
cmdlets, which can be used to execute a Data Masker masking set. PowerShell scripts
can be scheduled to run overnight on a schedule appropriate to your project, using the
Windows Task Scheduler, SQL Agent, or another scheduling tool.

Creating clones
Clone creation and recreation for shared environments can also be automated. Ad-hoc
clone creation can be useful for particular developers, branches, or work items. This can
be handled by a DBA in response to tickets, but SQL Clone can also be used to delegate
this responsibility to developers by giving them appropriate permissions and either access
to the SQL Clone web UI or scripts designed to create relevant clone databases.

If per-instance or per-environment configuration is required, users with image creation
privileges can create clone templates which consist of a set of SQL scripts to run after
clone creation.

Managing images and clones
Since clone databases depend on their image, images cannot be deleted while they have
clones. Many users therefore find it useful to keep a rolling set of images available so
that developers can continue to work against a particular clone until they’ve finished their
current task, then get a fresh clone based on an up-to-date image to start the next piece
of work.

Deleting of old images which no longer have clones can be automated using PowerShell.
The SQL Clone web UI can be used to get an overall view of the images and clones in your
environment, and more advanced workflows can be constructed by building on top of the
PowerShell cmdlets.

https://documentation.red-gate.com/clone2/automation/powershell-worked-examples/run-a-data-masker-masking-set-during-image-creation
https://documentation.red-gate.com/clone2/automation/windows-task-scheduler-example
https://documentation.red-gate.com/clone2/automation/powershell-worked-examples/refresh-all-clone-databases-to-use-an-updated-image
https://documentation.red-gate.com/clone2/automation/powershell-worked-examples/purge-old-images-which-don-t-have-clones

Guide Best practices for SQL Provision

7

Security
SQL Clone provides a web interface, by default on port 14145, which can be locked down
to specific Windows users or Active Directory groups. Only users who are permitted to
manage users, licensing, and updates should be given Admin privileges. Regular users who
are allowed to create images and clones can be given Standard user permissions, while
any users who are only permitted to consume available images to create clones can be
granted Clone only privileges. This final permission level can be used to permit developers
to manage their own clones but not to create custom images, thereby ensuring that any
required modification scripts and masking sets have been run correctly on images they
can use for development purposes.

To ensure security, we would also recommend setting up an HTTPS certificate on this port
as described in our documentation.

The SQL Clone Server must also be accessible on port 14146 for SQL Clone Agents to
connect. This port is always protected by SQL Clone’s own HTTPS certificates.

The SQL Clone Server service user only needs to be able to access its own configuration
database using Windows Authentication and listen on these ports. It does not require local
administrative access. Because the SQL Clone Agent service needs to be able to mount
disks and manage databases, it needs local administrative privileges and membership of
the sysadmin fixed role on any local instances of SQL Server with which you want to create
images or clones.

The location where images are stored must be accessible to all applicable SQL Clone
Agent service users, and it is best practice to restrict this from other non-administrative
users to ensure that images are only accessed through the SQL Clone system.

https://documentation.red-gate.com/clone2/getting-started/installation/installing-the-sql-clone-server/configuring-https-and-custom-ports

Guide Best practices for SQL Provision

8

Using clone databases
In most ways, clone databases work just like normal databases.
However, their performance and growth characteristics can be
significantly affected by how they are used.

Performance
As clones use disk-based virtualization, their performance characteristics are influenced
by how SQL Server accesses its data files and the underlying Microsoft virtual disk driver
– data does not directly pass through the SQL Clone service. While clones should not be
used to generate realistic performance data, most users find clone performance to be
similar in most development scenarios. However, operations which involve accessing or
changing large number of pages will result in a large number of requests to the virtual disk
driver, many of which may need to be served over the network. Index scans of a large table
or updating many rows may therefore be noticeably slower than with a local database.

As changes are made to the clone database, they are saved locally, and can therefore
be accessed without making requests across the network. This means that if clones are
used for longer, although they will use more disk space, they will also tend to have better
performance.

Given that your network setup and the how SQL Server responds to queries affect
the performance of clone databases, it is best to test using typical workloads in your
environment.

Size
When clones are initially created, the clone data files themselves contain very little data
because unmodified data is stored in the image. As changes are made to the database, the
clone data files will grow. Any processes, either automated or manual, which cause writes
to the database files can potentially cause clone growth.

If you create a clone which was originally created from an older version of SQL Server onto
a newer instance, SQL Server will upgrade the database version, causing writes which
will increase the size of the clone. This can be avoided by using the same version of SQL
Server for image and clone creation. Initial clone size (and time to create clones) may also
be higher if there is a large log file.

Guide Best practices for SQL Provision

Operations causing a large number of writes, particularly if they occur across many
database pages, will cause clones to grow in size significantly as the changes must be
saved locally. In particular, re-indexing clones should be avoided, and data masking should
be performed on images rather than clones.

Generally, clones are best used for short-lived development tasks or temporary
environments which are regularly refreshed, and should be regularly replaced rather than
maintained over long periods of time.

Maintenance
SQL Clone uses a SQL Server database (by default called SqlClone_Config) for storing its
state and history information. This database should be backed up regularly.

Redgate releases regular product updates for SQL Clone. Provided that the SQL Clone
Server can communicate with update.red-gate.com, it will inform you when updates are
available, and these can be installed from the web UI by administrators.

Agents automatically update when the SQL Clone Server they are attached to is updated.

.

